您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览27

Animal studies have been of pivotal importance in advancing knowledge of the metabolism and roles of n-6 and n-3 fatty acids and the effects of specific dietary intakes on membrane composition and related functions. Advantages of animal studies include the rigid control of fatty acid and other nutrient intakes and the degree, timing, and duration of deficiency or excess, the absence of confounding environmental and clinical variables, and the tissue analysis and testing procedures that cannot be performed in human studies. However, differences among species in nutrient requirements and metabolism and the severity and duration of the dietary treatment must be considered before extrapolating results to humans. Studies in rodents and nonhuman primates fed diets severely deficient in alpha-linolenic acid (18:3n-3) showed altered visual function and behavioral problems, and played a fundamental role by identifying neural systems that may be sensitive to dietary n-3 fatty acid intakes; this information has assisted researchers in planning clinical studies. However, whereas animal studies have focused mainly on 18:3n-3 deficiency, there is considerable clinical interest in docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6) supplementation. Information from animal studies suggests that brain and retinal concentrations of 22:6n-3 plateau with 18:3n-3 intakes of approximately 0.7

作者:S M, Innis

来源:The American journal of clinical nutrition 2000 年 71卷 1 Suppl期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:27
作者:
S M, Innis
来源:
The American journal of clinical nutrition 2000 年 71卷 1 Suppl期
Animal studies have been of pivotal importance in advancing knowledge of the metabolism and roles of n-6 and n-3 fatty acids and the effects of specific dietary intakes on membrane composition and related functions. Advantages of animal studies include the rigid control of fatty acid and other nutrient intakes and the degree, timing, and duration of deficiency or excess, the absence of confounding environmental and clinical variables, and the tissue analysis and testing procedures that cannot be performed in human studies. However, differences among species in nutrient requirements and metabolism and the severity and duration of the dietary treatment must be considered before extrapolating results to humans. Studies in rodents and nonhuman primates fed diets severely deficient in alpha-linolenic acid (18:3n-3) showed altered visual function and behavioral problems, and played a fundamental role by identifying neural systems that may be sensitive to dietary n-3 fatty acid intakes; this information has assisted researchers in planning clinical studies. However, whereas animal studies have focused mainly on 18:3n-3 deficiency, there is considerable clinical interest in docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6) supplementation. Information from animal studies suggests that brain and retinal concentrations of 22:6n-3 plateau with 18:3n-3 intakes of approximately 0.7