您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

The thyroid hormone receptor and the highly related viral oncoprotein v-erbA are found exclusively in the nucleus as stable constituents of chromatin. Unlike most transcriptional regulators, the thyroid hormone receptor binds with comparable affinity to naked and nucleosomal DNA. In vitro reconstitution experiments and in vivo genomic footprinting have delineated the chromatin structural features that facilitate association with the receptor. Chromatin bound thyroid hormone receptor and v-erbA generate Dnase I hypersensitive sites independent of ligand. The unliganded thyroid hormone receptor and v-erbA associate with a corepressor complex containing NCoR, SIN3, and histone deacetylase. The enzymatic activity of the deacetylase and a chromatin environment are essential for the dominant repression of transcription by both the unliganded thyroid hormone receptor and v-erbA. In the presence of ligand, the thyroid hormone receptor undergoes a conformational change that weakens interactions with the corepressor complex while facilitating the recruitment of transcriptional coactivators such as p300 and PCAF possessing histone acetyltransferase activity. The ligand-bound thyroid hormone receptor directs chromatin disruption events in addition to histone acetylation. Thus, the thyroid hormone receptor and v-erbA make very effective use of their stable association with chromatin and their capacity to alter the chromatin environment as a major component of the transcription regulation process. This system provides an exceptionally useful paradigm for investigating the structural and functional consequences of targeted chromatin modification.

作者:A P, Wolffe;T N, Collingwood;Q, Li;J, Yee;F, Urnov;Y B, Shi

来源:Vitamins and hormones 2000 年 58卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
A P, Wolffe;T N, Collingwood;Q, Li;J, Yee;F, Urnov;Y B, Shi
来源:
Vitamins and hormones 2000 年 58卷
The thyroid hormone receptor and the highly related viral oncoprotein v-erbA are found exclusively in the nucleus as stable constituents of chromatin. Unlike most transcriptional regulators, the thyroid hormone receptor binds with comparable affinity to naked and nucleosomal DNA. In vitro reconstitution experiments and in vivo genomic footprinting have delineated the chromatin structural features that facilitate association with the receptor. Chromatin bound thyroid hormone receptor and v-erbA generate Dnase I hypersensitive sites independent of ligand. The unliganded thyroid hormone receptor and v-erbA associate with a corepressor complex containing NCoR, SIN3, and histone deacetylase. The enzymatic activity of the deacetylase and a chromatin environment are essential for the dominant repression of transcription by both the unliganded thyroid hormone receptor and v-erbA. In the presence of ligand, the thyroid hormone receptor undergoes a conformational change that weakens interactions with the corepressor complex while facilitating the recruitment of transcriptional coactivators such as p300 and PCAF possessing histone acetyltransferase activity. The ligand-bound thyroid hormone receptor directs chromatin disruption events in addition to histone acetylation. Thus, the thyroid hormone receptor and v-erbA make very effective use of their stable association with chromatin and their capacity to alter the chromatin environment as a major component of the transcription regulation process. This system provides an exceptionally useful paradigm for investigating the structural and functional consequences of targeted chromatin modification.