您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览46

With the inclusion of brief discussions of retinoid drug development in animal carcinogenesis models (e.g., skin, breast, oral cavity, lung, prostate or bladder) and clinical trials (e.g., head and neck or cervix), this review will focus on recent advances in retinoid molecular targeting studies designed primarily to develop retinoids with reduced toxicity, while maintaining or enhancing activity in the context of chemoprevention. Major current retinoid molecular targets include the six known nuclear retinoid receptors (RAR and RXR). Receptor numbers, distinct functions, tissue-expression patterns, ligand specificities, functional redundancy and regulation of multiple pathways make retinoid signaling highly complex. Development of receptor-selective synthetic retinoids is a major focus of molecular retinoid development. RAR heterodimerize with RXR and mediate classic retinoid activity/toxicity. RXR are more promiscuous, heterodimerizing with several other members of the steroid receptor superfamily [e.g., peroxisome proliferator-activated receptors (PPAR) or vitamin D receptors]. RXR-selective ligands are less toxic and more active in animal breast cancer prevention studies and less toxic than RAR ligands in clinical trials. Other new avenues of retinoid molecular drug development include newly identified retinoid-regulated genes, orphan-receptor ligands/functions, novel retinoid mechanisms involving potent receptor-independent apoptosis-inducing activity (e.g., 4-HPR or anhydroretinol), synergistic combinations [e.g., RXR agonists plus selective estrogen receptor modulators (SERM)], activity in other diseases and novel delivery systems.

作者:S M, Lippman;R, Lotan

来源:The Journal of nutrition 2000 年 130卷 2S Suppl期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:46
作者:
S M, Lippman;R, Lotan
来源:
The Journal of nutrition 2000 年 130卷 2S Suppl期
With the inclusion of brief discussions of retinoid drug development in animal carcinogenesis models (e.g., skin, breast, oral cavity, lung, prostate or bladder) and clinical trials (e.g., head and neck or cervix), this review will focus on recent advances in retinoid molecular targeting studies designed primarily to develop retinoids with reduced toxicity, while maintaining or enhancing activity in the context of chemoprevention. Major current retinoid molecular targets include the six known nuclear retinoid receptors (RAR and RXR). Receptor numbers, distinct functions, tissue-expression patterns, ligand specificities, functional redundancy and regulation of multiple pathways make retinoid signaling highly complex. Development of receptor-selective synthetic retinoids is a major focus of molecular retinoid development. RAR heterodimerize with RXR and mediate classic retinoid activity/toxicity. RXR are more promiscuous, heterodimerizing with several other members of the steroid receptor superfamily [e.g., peroxisome proliferator-activated receptors (PPAR) or vitamin D receptors]. RXR-selective ligands are less toxic and more active in animal breast cancer prevention studies and less toxic than RAR ligands in clinical trials. Other new avenues of retinoid molecular drug development include newly identified retinoid-regulated genes, orphan-receptor ligands/functions, novel retinoid mechanisms involving potent receptor-independent apoptosis-inducing activity (e.g., 4-HPR or anhydroretinol), synergistic combinations [e.g., RXR agonists plus selective estrogen receptor modulators (SERM)], activity in other diseases and novel delivery systems.