您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览70

Superparamagnetic iron nanoparticles have been developed as contrast agents for magnetic resonance lymphography. The kinetics of uptake of these particles has not yet been accurately determined. We have therefore monitored the distribution of individual iron particles (ferumoxtran, AMI-227, Sinerem) in rat lymph nodes 1.5, 3, 6, 12, and 24 hours after i.v. injection (two rats per time point). The ultrastructural distribution of the iron was determined by energy-filtered transmission electron microscopy (EFTEM). This method allows the identification of elements using element-specific energy-loss electrons. Iron was identified by the Fe-L(2,3) edge (EELS), and iron maps were obtained using iron-specific electrons for imaging (ESI). The background was calculated by simplex optimization (EELS) and by the two-window method (ESI). Ferumoxtran particles were regularly observed at the periphery of the lymph nodes but not in their centers. Isolated iron particles were seen extracellularly within lymph vessels and, 3 hours after injection, as small dots in phagocytic cells. Numerous dense clusters appeared within the cells at later times (6 and 12 hours after injection). These results suggest that the contrast agent moves rapidly across the capillary wall to the lymph and is then taken up by phagocytic cells. J. Magn. Reson. Imaging 2000;12:505-509.

作者:C, Bordat;M, Sich;F, Réty;O, Bouet;G, Cournot;C A, Cuénod;O, Clément

来源:Journal of magnetic resonance imaging : JMRI 2000 年 12卷 3期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:70
作者:
C, Bordat;M, Sich;F, Réty;O, Bouet;G, Cournot;C A, Cuénod;O, Clément
来源:
Journal of magnetic resonance imaging : JMRI 2000 年 12卷 3期
Superparamagnetic iron nanoparticles have been developed as contrast agents for magnetic resonance lymphography. The kinetics of uptake of these particles has not yet been accurately determined. We have therefore monitored the distribution of individual iron particles (ferumoxtran, AMI-227, Sinerem) in rat lymph nodes 1.5, 3, 6, 12, and 24 hours after i.v. injection (two rats per time point). The ultrastructural distribution of the iron was determined by energy-filtered transmission electron microscopy (EFTEM). This method allows the identification of elements using element-specific energy-loss electrons. Iron was identified by the Fe-L(2,3) edge (EELS), and iron maps were obtained using iron-specific electrons for imaging (ESI). The background was calculated by simplex optimization (EELS) and by the two-window method (ESI). Ferumoxtran particles were regularly observed at the periphery of the lymph nodes but not in their centers. Isolated iron particles were seen extracellularly within lymph vessels and, 3 hours after injection, as small dots in phagocytic cells. Numerous dense clusters appeared within the cells at later times (6 and 12 hours after injection). These results suggest that the contrast agent moves rapidly across the capillary wall to the lymph and is then taken up by phagocytic cells. J. Magn. Reson. Imaging 2000;12:505-509.