您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览31

Cancer vaccines are entering a new phase of popularity, in part because of the recognition of when a therapeutic vaccine is most effective and the identification of appropriate target antigens. New technologies, most notably gene transfection into dendritic cell and DNA vaccination approaches, have spurred further clinical evaluations. While many researchers consider humoral responses as not being viable for large tumors, these responses may play a role in regulating micrometastases (i.e., adjuvant setting). The recent approval of antibodies as therapeutics for cancer treatment has lent to the viability of this therapy concept. The success of carbohydrate-conjugate vaccines in bacterial systems has also renewed interest in developing such vaccines for cancer immunotherapy. Carbohydrates can be further converted into peptide/protein mimetics with several of these mimetics in clinical trials. These mimetic forms can be manipulated into DNA vaccine types that may be combined into DNA cassettes that contain CTL-associated epitopes to further define a novel strategy for future vaccine development.

作者:B, Monzavi-Karbassi;T, Kieber-Emmons

来源:BioTechniques 2001 年 30卷 1期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:31
作者:
B, Monzavi-Karbassi;T, Kieber-Emmons
来源:
BioTechniques 2001 年 30卷 1期
Cancer vaccines are entering a new phase of popularity, in part because of the recognition of when a therapeutic vaccine is most effective and the identification of appropriate target antigens. New technologies, most notably gene transfection into dendritic cell and DNA vaccination approaches, have spurred further clinical evaluations. While many researchers consider humoral responses as not being viable for large tumors, these responses may play a role in regulating micrometastases (i.e., adjuvant setting). The recent approval of antibodies as therapeutics for cancer treatment has lent to the viability of this therapy concept. The success of carbohydrate-conjugate vaccines in bacterial systems has also renewed interest in developing such vaccines for cancer immunotherapy. Carbohydrates can be further converted into peptide/protein mimetics with several of these mimetics in clinical trials. These mimetic forms can be manipulated into DNA vaccine types that may be combined into DNA cassettes that contain CTL-associated epitopes to further define a novel strategy for future vaccine development.