您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

The K-Cl cotransporters (KCCs) have a broad range of physiological roles, in a number of cells and species. We report here that Xenopus laevis oocytes express a K-Cl cotransporter with significant functional and molecular similarity to mammalian KCCs. Under isotonic conditions, defolliculated oocytes exhibit a Cl(-)-dependent (86)Rb(+) uptake mechanism after activation by the cysteine-reactive compounds N-ethylmaleimide (NEM) and mercuric chloride (HgCl(2)). The activation of this K-Cl cotransporter by cell swelling is prevented by inhibition of protein phosphatase-1 with calyculin A; NEM activation of the transporter was not blocked by phosphatase inhibition. Kinetic characterization reveals apparent values for the Michaelis-Menten constant of 27.7 +/- 3.0 and 15.4 +/- 4.7 mM for Rb(+) and Cl(-), respectively, with an anion selectivity for K(+) transport of Cl(-) = PO(4)(3-) = Br(-) > I(-) > SCN(-) > gluconate. The oocyte K-Cl cotransporter was sensitive to several inhibitors, including loop diuretics, with apparent half-maximal inhibition values of 200 and 500 microM for furosemide and bumetanide, respectively. A partial cDNA encoding the Xenopus K-Cl cotransporter was cloned from oocyte RNA; the corresponding transcript is widely expressed in Xenopus tissues. The predicted COOH-terminal protein fragment exhibited particular homology to the KCC1/KCC3 subgroup of the mammalian KCCs, and the functional characteristics are the most similar to those of KCC1 (Mercado A, Song L, Vazquez N, Mount DB, and Gamba G. J Biol Chem 275: 30326--30334, 2000).

作者:A, Mercado;P, de los Heros;N, Vázquez;P, Meade;D B, Mount;G, Gamba

来源:American journal of physiology. Cell physiology 2001 年 281卷 2期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
A, Mercado;P, de los Heros;N, Vázquez;P, Meade;D B, Mount;G, Gamba
来源:
American journal of physiology. Cell physiology 2001 年 281卷 2期
The K-Cl cotransporters (KCCs) have a broad range of physiological roles, in a number of cells and species. We report here that Xenopus laevis oocytes express a K-Cl cotransporter with significant functional and molecular similarity to mammalian KCCs. Under isotonic conditions, defolliculated oocytes exhibit a Cl(-)-dependent (86)Rb(+) uptake mechanism after activation by the cysteine-reactive compounds N-ethylmaleimide (NEM) and mercuric chloride (HgCl(2)). The activation of this K-Cl cotransporter by cell swelling is prevented by inhibition of protein phosphatase-1 with calyculin A; NEM activation of the transporter was not blocked by phosphatase inhibition. Kinetic characterization reveals apparent values for the Michaelis-Menten constant of 27.7 +/- 3.0 and 15.4 +/- 4.7 mM for Rb(+) and Cl(-), respectively, with an anion selectivity for K(+) transport of Cl(-) = PO(4)(3-) = Br(-) > I(-) > SCN(-) > gluconate. The oocyte K-Cl cotransporter was sensitive to several inhibitors, including loop diuretics, with apparent half-maximal inhibition values of 200 and 500 microM for furosemide and bumetanide, respectively. A partial cDNA encoding the Xenopus K-Cl cotransporter was cloned from oocyte RNA; the corresponding transcript is widely expressed in Xenopus tissues. The predicted COOH-terminal protein fragment exhibited particular homology to the KCC1/KCC3 subgroup of the mammalian KCCs, and the functional characteristics are the most similar to those of KCC1 (Mercado A, Song L, Vazquez N, Mount DB, and Gamba G. J Biol Chem 275: 30326--30334, 2000).