您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览32

As in other cells, neurons use adenosine triphosphate (ATP) as an energy source to drive biochemical processes involved in various cell functions, and produce reactive oxygen species (ROS) as "by products" of oxidative phosphorylation. However, the electrical excitability and structural and synaptic complexity of neurons present unusual demands upon cellular systems that produce or respond to ATP and ROS. Mitochondria in axons and presynaptic terminals provide sources of ATP to drive the ion pumps that are concentrated in these structures to rapidly restore ion gradients following depolarization and neurotransmitter release. Mitochondria may also play important roles in the regulation of synaptic function because of their ability to regulate calcium levels and ROS production. ROS generated in response to synaptic activity are now known to contribute to the regulation of long-term structural and functional changes in neurons, and the best-known example is the nitric oxide radical. The high-energy demands of synapses, together with their high levels of ROS production, place them at risk during conditions of increased stress, which occur in aging, neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, and after acute traumatic and ischemic insults. Energy depletion and/or increased oxidative damage to various synaptic proteins can result in a local dysregulation of calcium homeostasis and synaptic degeneration. Accordingly, recent studies have shown that dietary and pharmacological manipulations that improve energy efficiency and reduce oxyradical production can prevent synaptic degeneration and neuronal death in experimental models of neurodegenerative disorders. A better understanding of the molecular control of subcellular energy production and utilization, and of the functional relationships between energy metabolism, ion homeostasis, and cytoskeletal and vesicular dynamics, will provide novel insight into mechanisms of neuronal plasticity and disease.

作者:Mark P, Mattson;Dong, Liu

来源:Neuromolecular medicine 2002 年 2卷 2期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:32
作者:
Mark P, Mattson;Dong, Liu
来源:
Neuromolecular medicine 2002 年 2卷 2期
As in other cells, neurons use adenosine triphosphate (ATP) as an energy source to drive biochemical processes involved in various cell functions, and produce reactive oxygen species (ROS) as "by products" of oxidative phosphorylation. However, the electrical excitability and structural and synaptic complexity of neurons present unusual demands upon cellular systems that produce or respond to ATP and ROS. Mitochondria in axons and presynaptic terminals provide sources of ATP to drive the ion pumps that are concentrated in these structures to rapidly restore ion gradients following depolarization and neurotransmitter release. Mitochondria may also play important roles in the regulation of synaptic function because of their ability to regulate calcium levels and ROS production. ROS generated in response to synaptic activity are now known to contribute to the regulation of long-term structural and functional changes in neurons, and the best-known example is the nitric oxide radical. The high-energy demands of synapses, together with their high levels of ROS production, place them at risk during conditions of increased stress, which occur in aging, neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, and after acute traumatic and ischemic insults. Energy depletion and/or increased oxidative damage to various synaptic proteins can result in a local dysregulation of calcium homeostasis and synaptic degeneration. Accordingly, recent studies have shown that dietary and pharmacological manipulations that improve energy efficiency and reduce oxyradical production can prevent synaptic degeneration and neuronal death in experimental models of neurodegenerative disorders. A better understanding of the molecular control of subcellular energy production and utilization, and of the functional relationships between energy metabolism, ion homeostasis, and cytoskeletal and vesicular dynamics, will provide novel insight into mechanisms of neuronal plasticity and disease.