您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览39

Following the Chernobyl accident, radioactive fission products, including (131)I and (137)Cs, were deposited in Bryansk Oblast in Russia. Intakes of radioiodines, mainly (131)I in milk, were the principal sources of radiation doses to thyroids of residents of the contaminated areas, but those radionuclides decayed before detailed contamination surveys could be performed. As a result, (137)Cs deposition density is the primary measure of the contamination due to the accident and there are relatively few measurements of the ratio of (131)I to (137)Cs in vegetation or soil samples from this area. Although many measurements of radiation emitted from the necks of residents were performed and used to estimate thyroidal (131)I activities and thyroid doses, such data are not available for all subjects. The semi-empirical model was selected to provide a dose calculation method to be applied uniformly to cases and controls in the study. The model was developed using dose estimates from direct measurements of (131)I in adult thyroids, and relates settlement average thyroid doses to (137)Cs contamination levels and ratios of (131)I to (137)Cs. This model is useful for areas where thyroid monitoring was not performed and can be used to estimate doses to exposed individuals. For application to children in this study, adjustment factors are used to address differences in age-dependent intake rates and thyroid dosimetry. Other individual dietary factors and sources (private/public) of milk consumed are reflected in the dose estimates. Countermeasures that reduced thyroid dose, such as cessation of milk consumption and intake of stable iodine, are also considered for each subject. The necessary personal information of subjects was obtained by interview, most frequently of their mothers, using a questionnaire developed for the study. Uncertainties in thyroid dose, estimated using Monte Carlo techniques, are presented for reference conditions. Thyroid dose estimates for individual children made using the semi-empirical model and questionnaire data compare reasonably well with dose estimates made for 19 children whose thyroid burdens of (131)I were measured from May to June 1986.

作者:V F, Stepanenko;P G, Voillequé;Yu I, Gavrilin;V T, Khrouch;S M, Shinkarev;M Yu, Orlov;A E, Kondrashov;D V, Petin;E K, Iaskova;A F, Tsyb

来源:Radiation protection dosimetry 2004 年 108卷 2期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:39
作者:
V F, Stepanenko;P G, Voillequé;Yu I, Gavrilin;V T, Khrouch;S M, Shinkarev;M Yu, Orlov;A E, Kondrashov;D V, Petin;E K, Iaskova;A F, Tsyb
来源:
Radiation protection dosimetry 2004 年 108卷 2期
Following the Chernobyl accident, radioactive fission products, including (131)I and (137)Cs, were deposited in Bryansk Oblast in Russia. Intakes of radioiodines, mainly (131)I in milk, were the principal sources of radiation doses to thyroids of residents of the contaminated areas, but those radionuclides decayed before detailed contamination surveys could be performed. As a result, (137)Cs deposition density is the primary measure of the contamination due to the accident and there are relatively few measurements of the ratio of (131)I to (137)Cs in vegetation or soil samples from this area. Although many measurements of radiation emitted from the necks of residents were performed and used to estimate thyroidal (131)I activities and thyroid doses, such data are not available for all subjects. The semi-empirical model was selected to provide a dose calculation method to be applied uniformly to cases and controls in the study. The model was developed using dose estimates from direct measurements of (131)I in adult thyroids, and relates settlement average thyroid doses to (137)Cs contamination levels and ratios of (131)I to (137)Cs. This model is useful for areas where thyroid monitoring was not performed and can be used to estimate doses to exposed individuals. For application to children in this study, adjustment factors are used to address differences in age-dependent intake rates and thyroid dosimetry. Other individual dietary factors and sources (private/public) of milk consumed are reflected in the dose estimates. Countermeasures that reduced thyroid dose, such as cessation of milk consumption and intake of stable iodine, are also considered for each subject. The necessary personal information of subjects was obtained by interview, most frequently of their mothers, using a questionnaire developed for the study. Uncertainties in thyroid dose, estimated using Monte Carlo techniques, are presented for reference conditions. Thyroid dose estimates for individual children made using the semi-empirical model and questionnaire data compare reasonably well with dose estimates made for 19 children whose thyroid burdens of (131)I were measured from May to June 1986.