您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览28

Time-independent quantum scattering calculations have been carried out on the Walden inversion S(N)2 reaction Cl(-)+CH(3)Cl(')(v(1),v(2),v(3))-->ClCH(3)(v(1) ('),v(2) ('),v(3) ('))+Cl('-). The two C-Cl stretching modes (quantum numbers v(3) and v(3) (')) and the totally symmetric internal modes of the methyl group (C-H stretching vibration, v(1) and v(1) ('), and inversion bending vibration, v(2) and v(2) (')) are treated explicitly. A four-dimensional coupled cluster potential energy surface is employed. The scattering problem is formulated in hyperspherical coordinates using the exact Hamiltonian and exploiting the full symmetry of the problem. Converged state-selected reaction probabilities and product distributions have been calculated up to 6100 cm(-1) above the vibrational ground state of CH(3)Cl, i.e., up to initial vibrational excitation (2,0,0). In order to extract all scattering resonances, the energetic grid was chosen to be very fine, partly down to a resolution of 10(-12) cm(-1). Up to 2500 cm(-1) translational energy, initial excitation of the umbrella bending vibration, (0,1,0), is more efficient for reaction than exciting the C-Cl stretching mode, (0,0,1). The combined excitation of both vibrations results in a synergic effect, i.e., a considerably higher reaction probability than expected from the sum of both independent excitations, even higher than (0,0,2) up to 1500 cm(-1) translational energy. Product distributions show that the umbrella mode is strongly coupled to the C-Cl stretching mode and cannot be treated as a spectator mode. The reaction probability rises almost linearly with increasing initial excitation of the umbrella bending mode. The effect with respect to the C-Cl stretch is five times larger for more than two quanta in this mode, and in agreement with previous work saturation is found. Exciting the high-frequency C-H stretching mode, (1,0,0), yields a large increase for small energies [more than two orders of magnitude larger than (0,0,0)], while for translational energies higher than 2000 cm(-1), it becomes a pure spectator mode. For combined initial excitations including the symmetric C-H stretch, the spectator character of the latter is even more pronounced. However, up to more than 1500 cm(-1) translational energy, the C-H vibration does not behave adiabatically during the course of reaction, because only 20

作者:Carsten, Hennig;Stefan, Schmatz

来源:The Journal of chemical physics 2004 年 121卷 1期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:28
作者:
Carsten, Hennig;Stefan, Schmatz
来源:
The Journal of chemical physics 2004 年 121卷 1期
Time-independent quantum scattering calculations have been carried out on the Walden inversion S(N)2 reaction Cl(-)+CH(3)Cl(')(v(1),v(2),v(3))-->ClCH(3)(v(1) ('),v(2) ('),v(3) ('))+Cl('-). The two C-Cl stretching modes (quantum numbers v(3) and v(3) (')) and the totally symmetric internal modes of the methyl group (C-H stretching vibration, v(1) and v(1) ('), and inversion bending vibration, v(2) and v(2) (')) are treated explicitly. A four-dimensional coupled cluster potential energy surface is employed. The scattering problem is formulated in hyperspherical coordinates using the exact Hamiltonian and exploiting the full symmetry of the problem. Converged state-selected reaction probabilities and product distributions have been calculated up to 6100 cm(-1) above the vibrational ground state of CH(3)Cl, i.e., up to initial vibrational excitation (2,0,0). In order to extract all scattering resonances, the energetic grid was chosen to be very fine, partly down to a resolution of 10(-12) cm(-1). Up to 2500 cm(-1) translational energy, initial excitation of the umbrella bending vibration, (0,1,0), is more efficient for reaction than exciting the C-Cl stretching mode, (0,0,1). The combined excitation of both vibrations results in a synergic effect, i.e., a considerably higher reaction probability than expected from the sum of both independent excitations, even higher than (0,0,2) up to 1500 cm(-1) translational energy. Product distributions show that the umbrella mode is strongly coupled to the C-Cl stretching mode and cannot be treated as a spectator mode. The reaction probability rises almost linearly with increasing initial excitation of the umbrella bending mode. The effect with respect to the C-Cl stretch is five times larger for more than two quanta in this mode, and in agreement with previous work saturation is found. Exciting the high-frequency C-H stretching mode, (1,0,0), yields a large increase for small energies [more than two orders of magnitude larger than (0,0,0)], while for translational energies higher than 2000 cm(-1), it becomes a pure spectator mode. For combined initial excitations including the symmetric C-H stretch, the spectator character of the latter is even more pronounced. However, up to more than 1500 cm(-1) translational energy, the C-H vibration does not behave adiabatically during the course of reaction, because only 20