您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览2

To model the biotransformation steps of 5-FU production from capecitabine and identify patient characteristics that may influence the drug disposition.Blood samples and demographic data were collected from two phase I studies in which adult patients received oral capecitabine for various malignancies. Capecitabine, 5'-deoxy-5-fluorocytidine (5'-DFCR), 5'-deoxy-5-fluorouridine (5'-DFUR) and 5-fluorouracile (5-FU) concentration-time data were analysed via a population approach using NONMEM.Forty patients and 75 pharmacokinetic time-courses were available for analysis. Capecitabine pharmacokinetics was ascribed to a one compartment model from which 5'-DFCR, 5'-DFUR and 5-FU were sequentially produced. Capecitabine oral absorption was characterized by a rapid first order input (K(a)=2.1 +/- 0.3 hr(-1)) with a lag time (0.28 +/- 0.11 hr), but related inter-occasion (IOV) and inter-subject (ISV) variabilities for these parameters, 167

作者:Saik, Urien;Keyvan, Rezaí;Fran?ois, Lokiec

来源:Journal of pharmacokinetics and pharmacodynamics 2005 年 32卷 5-6期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:2
作者:
Saik, Urien;Keyvan, Rezaí;Fran?ois, Lokiec
来源:
Journal of pharmacokinetics and pharmacodynamics 2005 年 32卷 5-6期
To model the biotransformation steps of 5-FU production from capecitabine and identify patient characteristics that may influence the drug disposition.Blood samples and demographic data were collected from two phase I studies in which adult patients received oral capecitabine for various malignancies. Capecitabine, 5'-deoxy-5-fluorocytidine (5'-DFCR), 5'-deoxy-5-fluorouridine (5'-DFUR) and 5-fluorouracile (5-FU) concentration-time data were analysed via a population approach using NONMEM.Forty patients and 75 pharmacokinetic time-courses were available for analysis. Capecitabine pharmacokinetics was ascribed to a one compartment model from which 5'-DFCR, 5'-DFUR and 5-FU were sequentially produced. Capecitabine oral absorption was characterized by a rapid first order input (K(a)=2.1 +/- 0.3 hr(-1)) with a lag time (0.28 +/- 0.11 hr), but related inter-occasion (IOV) and inter-subject (ISV) variabilities for these parameters, 167