您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

Short interfering RNAs (siRNA) guide degradation of target RNA by the RNA-induced silencing complex (RISC). The use of siRNA in animals is limited partially due to the short half-life of siRNAs in tissues. Chemically modified siRNAs are necessary that maintain mRNA degradation activity, but are more stable to nucleases. In this study, we utilized alternating 2'-O-methyl and 2'-deoxy-2'-fluoro (OMe/F) chemically modified siRNA targeting PTEN and Eg5. OMe/F-modified siRNA consistently reduced mRNA and protein levels with equal or greater potency and efficacy than unmodified siRNA. We showed that modified siRNAs use the RISC mechanism and lead to cleavage of target mRNA at the same position as unmodified siRNA. We further demonstrated that siRNAs can compete with each other, where highly potent siRNAs can compete with less potent siRNAs, thus limiting the ability of siRNAs with lower potency to mediate mRNA degradation. In contrast, a siRNA with low potency cannot compete with a highly efficient siRNA. We established a correlation between siRNA potency and ability to compete with other siRNAs. Thus, siRNAs that are more potent inhibitors for mRNA destruction have the potential to out-compete less potent siRNAs indicating that the amount of a cellular component, perhaps RISC, limits siRNA activity.

作者:Erich, Koller;Stephanie, Propp;Heather, Murray;Walter, Lima;Balkrishen, Bhat;Thaza P, Prakash;Charles R, Allerson;Eric E, Swayze;Eric G, Marcusson;Nicholas M, Dean

来源:Nucleic acids research 2006 年 34卷 16期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Erich, Koller;Stephanie, Propp;Heather, Murray;Walter, Lima;Balkrishen, Bhat;Thaza P, Prakash;Charles R, Allerson;Eric E, Swayze;Eric G, Marcusson;Nicholas M, Dean
来源:
Nucleic acids research 2006 年 34卷 16期
Short interfering RNAs (siRNA) guide degradation of target RNA by the RNA-induced silencing complex (RISC). The use of siRNA in animals is limited partially due to the short half-life of siRNAs in tissues. Chemically modified siRNAs are necessary that maintain mRNA degradation activity, but are more stable to nucleases. In this study, we utilized alternating 2'-O-methyl and 2'-deoxy-2'-fluoro (OMe/F) chemically modified siRNA targeting PTEN and Eg5. OMe/F-modified siRNA consistently reduced mRNA and protein levels with equal or greater potency and efficacy than unmodified siRNA. We showed that modified siRNAs use the RISC mechanism and lead to cleavage of target mRNA at the same position as unmodified siRNA. We further demonstrated that siRNAs can compete with each other, where highly potent siRNAs can compete with less potent siRNAs, thus limiting the ability of siRNAs with lower potency to mediate mRNA degradation. In contrast, a siRNA with low potency cannot compete with a highly efficient siRNA. We established a correlation between siRNA potency and ability to compete with other siRNAs. Thus, siRNAs that are more potent inhibitors for mRNA destruction have the potential to out-compete less potent siRNAs indicating that the amount of a cellular component, perhaps RISC, limits siRNA activity.