您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览11

Alzheimer's disease (AD) is the most common progressive neurodegenerative form of dementia in the elderly and is characterized neuropathologically by neurofibrillary tangles (NFT), amyloid neuritic plaques (NP), and prominent synaptic and eventually neuronal loss. Although the molecular basis of AD is not clearly understood, a neuroinflammatory process, triggered by Abeta42, plays a central role in the neurodegenerative process. This inflammatory process is driven by activated microglia, astrocytes and the induction of proinflammatory molecules and related signaling pathways, leading to both synaptic and neuronal damage as well as further inflammatory cell activation. Epidemiologic data as well as clinical trial evidence suggest that nonsteroidal anti-inflammatory drug (NSAID) use may decrease the incidence of AD, further supporting a role for inflammation in AD pathogenesis. Although the precise molecular and cellular relationship between AD and inflammation remains unclear, interleukins and cytokines might induce activation of signaling pathways leading to futher inflammation and neuronal injury. This chapter will discuss the association between interleukins and neurodegeneration in AD and highlight the significance of genetic and clinical aspects of interleukins in disease expression and progression. As part of an emerging inflammatory signaling network underlying AD pathogenesis, beta-amyloid (Abeta) stimulates the glial and microglial production of interleukins and other cytokines, leading to an ongoing inflammatory cascade and contributing to synaptic dysfunction and loss, and later, neuronal death. Inflammatory pathways involving interleukin and cytokine signaling might suggest potential targets for intervention and influence the development of novel therapies to circumvent synaptic and neuronal dysfunction ultimately leading to AD neurodegeneration.

作者:David, Weisman;Edwin, Hakimian;Gilbert J, Ho

来源:Vitamins and hormones 2006 年 74卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:11
作者:
David, Weisman;Edwin, Hakimian;Gilbert J, Ho
来源:
Vitamins and hormones 2006 年 74卷
Alzheimer's disease (AD) is the most common progressive neurodegenerative form of dementia in the elderly and is characterized neuropathologically by neurofibrillary tangles (NFT), amyloid neuritic plaques (NP), and prominent synaptic and eventually neuronal loss. Although the molecular basis of AD is not clearly understood, a neuroinflammatory process, triggered by Abeta42, plays a central role in the neurodegenerative process. This inflammatory process is driven by activated microglia, astrocytes and the induction of proinflammatory molecules and related signaling pathways, leading to both synaptic and neuronal damage as well as further inflammatory cell activation. Epidemiologic data as well as clinical trial evidence suggest that nonsteroidal anti-inflammatory drug (NSAID) use may decrease the incidence of AD, further supporting a role for inflammation in AD pathogenesis. Although the precise molecular and cellular relationship between AD and inflammation remains unclear, interleukins and cytokines might induce activation of signaling pathways leading to futher inflammation and neuronal injury. This chapter will discuss the association between interleukins and neurodegeneration in AD and highlight the significance of genetic and clinical aspects of interleukins in disease expression and progression. As part of an emerging inflammatory signaling network underlying AD pathogenesis, beta-amyloid (Abeta) stimulates the glial and microglial production of interleukins and other cytokines, leading to an ongoing inflammatory cascade and contributing to synaptic dysfunction and loss, and later, neuronal death. Inflammatory pathways involving interleukin and cytokine signaling might suggest potential targets for intervention and influence the development of novel therapies to circumvent synaptic and neuronal dysfunction ultimately leading to AD neurodegeneration.