您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览60

A facile L-cysteine-assisted route was designed for the selectively controlled synthesis of 1D and novel, interesting 3D CdS spherical nanostructures constructed from CdS nanorods (or nanopolypods) in a binary solution. By controlling reaction conditions such as the molar ratio between Cd(OAc)2 and L-cysteine and the volume ratio of the mixed solvents, the synthesis of various 3D architectural structures and 1D wirelike structures in large quantities can be controlled. This is the first reported case of the direct growth of novel 3D self-assemblies of CdS nanorods (or nanopolypods). The morphology, structure, and phase composition of the as-prepared CdS products were examined by using various techniques (X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-resolution TEM, and Raman spectroscopy). On the basis of the results from TEM studies and our analysis, we speculate that in the present synthesis the L-cysteine dominates nucleation growth and the ethylenediamine (en)-dominated, oriented-assembly process. Interestingly, the products obtained show a gradient evolution in color from light-yellow to dark-yellow, which implies that their intrinsic optical properties change, possibly due to variations in their special morphologies and structures. This facile solution-phase L-cysteine-assisted method could be extended for the controlled preparation of other metal chalcogenides nanostructures with complex morphologies.

作者:Shenglin, Xiong;Baojuan, Xi;Chengming, Wang;Guifu, Zou;Lifeng, Fei;Weizhi, Wang;Yitai, Qian

来源:Chemistry (Weinheim an der Bergstrasse, Germany) 2007 年 13卷 11期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:60
作者:
Shenglin, Xiong;Baojuan, Xi;Chengming, Wang;Guifu, Zou;Lifeng, Fei;Weizhi, Wang;Yitai, Qian
来源:
Chemistry (Weinheim an der Bergstrasse, Germany) 2007 年 13卷 11期
A facile L-cysteine-assisted route was designed for the selectively controlled synthesis of 1D and novel, interesting 3D CdS spherical nanostructures constructed from CdS nanorods (or nanopolypods) in a binary solution. By controlling reaction conditions such as the molar ratio between Cd(OAc)2 and L-cysteine and the volume ratio of the mixed solvents, the synthesis of various 3D architectural structures and 1D wirelike structures in large quantities can be controlled. This is the first reported case of the direct growth of novel 3D self-assemblies of CdS nanorods (or nanopolypods). The morphology, structure, and phase composition of the as-prepared CdS products were examined by using various techniques (X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-resolution TEM, and Raman spectroscopy). On the basis of the results from TEM studies and our analysis, we speculate that in the present synthesis the L-cysteine dominates nucleation growth and the ethylenediamine (en)-dominated, oriented-assembly process. Interestingly, the products obtained show a gradient evolution in color from light-yellow to dark-yellow, which implies that their intrinsic optical properties change, possibly due to variations in their special morphologies and structures. This facile solution-phase L-cysteine-assisted method could be extended for the controlled preparation of other metal chalcogenides nanostructures with complex morphologies.