您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览22

Chloride (Cl) is the most abundant physiological anion. Abnormalities in Cl regulation are instrumental in the development of several important diseases including motor disorders and epilepsy. Because of difficulties in the spectroscopic measurement of Cl in live tissues there is little knowledge available regarding the mechanisms of regulation of intracellular Cl concentration. Several years ago, a CFP-YFP based ratiometric Cl indicator (Clomeleon) was introduced [Kuner, T., Augustine, G.J. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 2000; 27: 447-59]. This construct with relatively low sensitivity to Cl (K(app) approximately 160 mM) allows ratiometric monitoring of Cl using fluorescence emission ratio. Here, we propose a new CFP-YFP-based construct (Cl-sensor) with relatively high sensitivity to Cl (K(app) approximately 30 mM) due to triple YFP mutant. The construct also exhibits good pH sensitivity with pK(alpha) ranging from 7.1 to 8.0 pH units at different Cl concentrations. Using Cl-sensor we determined non-invasively the distribution of [Cl](i) in cultured CHO cells, in neurons of primary hippocampal cultures and in photoreceptors of rat retina. This genetically encoded indicator offers a means for monitoring Cl and pH under different physiological conditions and high-throughput screening of pharmacological agents.

作者:Olga, Markova;Marat, Mukhtarov;Eleonore, Real;Yves, Jacob;Piotr, Bregestovski

来源:Journal of neuroscience methods 2008 年 170卷 1期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:22
作者:
Olga, Markova;Marat, Mukhtarov;Eleonore, Real;Yves, Jacob;Piotr, Bregestovski
来源:
Journal of neuroscience methods 2008 年 170卷 1期
Chloride (Cl) is the most abundant physiological anion. Abnormalities in Cl regulation are instrumental in the development of several important diseases including motor disorders and epilepsy. Because of difficulties in the spectroscopic measurement of Cl in live tissues there is little knowledge available regarding the mechanisms of regulation of intracellular Cl concentration. Several years ago, a CFP-YFP based ratiometric Cl indicator (Clomeleon) was introduced [Kuner, T., Augustine, G.J. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 2000; 27: 447-59]. This construct with relatively low sensitivity to Cl (K(app) approximately 160 mM) allows ratiometric monitoring of Cl using fluorescence emission ratio. Here, we propose a new CFP-YFP-based construct (Cl-sensor) with relatively high sensitivity to Cl (K(app) approximately 30 mM) due to triple YFP mutant. The construct also exhibits good pH sensitivity with pK(alpha) ranging from 7.1 to 8.0 pH units at different Cl concentrations. Using Cl-sensor we determined non-invasively the distribution of [Cl](i) in cultured CHO cells, in neurons of primary hippocampal cultures and in photoreceptors of rat retina. This genetically encoded indicator offers a means for monitoring Cl and pH under different physiological conditions and high-throughput screening of pharmacological agents.