您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览26

The GTPase activating protein, RGS9-1, is vital for the deactivation and regulation of the phototransduction cascade (C. K. Chen et al., 2000; C. W. Cowan, R. N. Fariss, I. Sokal, K. Palczewski, & T. G. Wensel, 1998; W. He, C. W. Cowan, & T. G. Wensel, 1998; A. L. Lyubarsky et al., 2001). Its loss through genetic defects in humans has been linked to a slow recovery to changes in illumination (K. M. Nishiguchi et al., 2004). Such a deficit is to be expected because RGS9-1 normally speeds up the deactivation of the activated phosphodiesterase effector molecule, PDE6*, and thus accelerates the turning off of the visual response. Paradoxically, however, we find that the cone response in an observer lacking RGS9-1 is faster at lower light levels than it is in a normal observer. Though surprising, this result is nonetheless consistent with molecular models of light adaptation (e.g., E. N. Pugh, S. Nikonov, & T. D. Lamb, 1999), which predict that the excess of PDE6* resulting from the loss of RGS9-1 will shorten the visual integration time and speed up the visual response at inappropriately low light levels. The gain in speed caused by the superfluity of PDE6* at lower light levels compensates for the loss caused by its slow deactivation; thus quickening the response relative to that in the normal. As the light level is increased and the PDE6* concentration in the normal rises relative to that in the observer lacking RGS9-1, the temporal advantage of the latter is soon lost, leaving only the deficit due to delayed deactivation.

作者:Andrew, Stockman;Hannah E, Smithson;Andrew R, Webster;Graham E, Holder;Naheed A, Rana;Caterina, Ripamonti;Lindsay T, Sharpe

来源:Journal of vision 2008 年 8卷 1期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:26
作者:
Andrew, Stockman;Hannah E, Smithson;Andrew R, Webster;Graham E, Holder;Naheed A, Rana;Caterina, Ripamonti;Lindsay T, Sharpe
来源:
Journal of vision 2008 年 8卷 1期
The GTPase activating protein, RGS9-1, is vital for the deactivation and regulation of the phototransduction cascade (C. K. Chen et al., 2000; C. W. Cowan, R. N. Fariss, I. Sokal, K. Palczewski, & T. G. Wensel, 1998; W. He, C. W. Cowan, & T. G. Wensel, 1998; A. L. Lyubarsky et al., 2001). Its loss through genetic defects in humans has been linked to a slow recovery to changes in illumination (K. M. Nishiguchi et al., 2004). Such a deficit is to be expected because RGS9-1 normally speeds up the deactivation of the activated phosphodiesterase effector molecule, PDE6*, and thus accelerates the turning off of the visual response. Paradoxically, however, we find that the cone response in an observer lacking RGS9-1 is faster at lower light levels than it is in a normal observer. Though surprising, this result is nonetheless consistent with molecular models of light adaptation (e.g., E. N. Pugh, S. Nikonov, & T. D. Lamb, 1999), which predict that the excess of PDE6* resulting from the loss of RGS9-1 will shorten the visual integration time and speed up the visual response at inappropriately low light levels. The gain in speed caused by the superfluity of PDE6* at lower light levels compensates for the loss caused by its slow deactivation; thus quickening the response relative to that in the normal. As the light level is increased and the PDE6* concentration in the normal rises relative to that in the observer lacking RGS9-1, the temporal advantage of the latter is soon lost, leaving only the deficit due to delayed deactivation.