您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

Superelasticity behavior of helices has been the focus of recent research in micro-/nano-engineering, while the traditional Kirchhoff rod model restricts itself in the bending and torsion conditions. With the aid of the concept of a Cosserat curve, a novel theoretical basis has been established for statics and dynamics of helices with essential extension and shear, which is able to quantitatively analyze the superelastic mechanical properties. Except for a good agreement with the experimental observation, numerical solutions have shown that we cannot only predict two important properties of the superelasticity characteristics: the breaking force and the stretch of the coil wire under the axial loading, but also precisely describe and explain the Hooke's constant and torque in the entire stretching and breaking processes. The present work has provided useful information for the future experimental investigation on superelasticity as well as its application in meta-/quantum devices.

作者:L, Dai;W Z, Shen

来源:Nanotechnology 2009 年 20卷 46期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
L, Dai;W Z, Shen
来源:
Nanotechnology 2009 年 20卷 46期
Superelasticity behavior of helices has been the focus of recent research in micro-/nano-engineering, while the traditional Kirchhoff rod model restricts itself in the bending and torsion conditions. With the aid of the concept of a Cosserat curve, a novel theoretical basis has been established for statics and dynamics of helices with essential extension and shear, which is able to quantitatively analyze the superelastic mechanical properties. Except for a good agreement with the experimental observation, numerical solutions have shown that we cannot only predict two important properties of the superelasticity characteristics: the breaking force and the stretch of the coil wire under the axial loading, but also precisely describe and explain the Hooke's constant and torque in the entire stretching and breaking processes. The present work has provided useful information for the future experimental investigation on superelasticity as well as its application in meta-/quantum devices.