您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览17

In a public hospital, eight cases of fatal poisoning by nitrous oxide (N(2)O) occurred under oxygen administration, due to an erroneous swapping of the lines in the gas system. The aim of the study was to clarify the factors involved in asphyxia by characterizing gases from different lines and measuring N(2)O concentrations in postmortem biological samples from bodies exhumed. Analyses carried out on the gas system confirmed the erroneous substitution of O(2) line with N(2)O and air line with O(2). Consequently, high N(2)O amounts were revealed in several tissues and gaseous biological samples. All specimens were analyzed by headspace gas chromatography technique. A rigorous quantitative analysis was possible only in blood (11.29-2152.04 mg/L) and urine (95.11 mg/L) and in air samples from stomach and trachea (from 5.28 to 83.63 g/m(3)). This study demonstrates that N(2)O can be detected in biological samples even 1 month after death.

作者:Diana, Poli;Roberto, Gagliano-Candela;Giuseppe, Strisciullo;Anna P, Colucci;Luigi, Strada;Domenica, Laviola;Matteo, Goldoni;Antonio, Mutti

来源:Journal of forensic sciences 2010 年 55卷 1期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:17
作者:
Diana, Poli;Roberto, Gagliano-Candela;Giuseppe, Strisciullo;Anna P, Colucci;Luigi, Strada;Domenica, Laviola;Matteo, Goldoni;Antonio, Mutti
来源:
Journal of forensic sciences 2010 年 55卷 1期
In a public hospital, eight cases of fatal poisoning by nitrous oxide (N(2)O) occurred under oxygen administration, due to an erroneous swapping of the lines in the gas system. The aim of the study was to clarify the factors involved in asphyxia by characterizing gases from different lines and measuring N(2)O concentrations in postmortem biological samples from bodies exhumed. Analyses carried out on the gas system confirmed the erroneous substitution of O(2) line with N(2)O and air line with O(2). Consequently, high N(2)O amounts were revealed in several tissues and gaseous biological samples. All specimens were analyzed by headspace gas chromatography technique. A rigorous quantitative analysis was possible only in blood (11.29-2152.04 mg/L) and urine (95.11 mg/L) and in air samples from stomach and trachea (from 5.28 to 83.63 g/m(3)). This study demonstrates that N(2)O can be detected in biological samples even 1 month after death.