您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

From elemental particles to human beings, matter and living worlds in our universe are dissymmetric with respect to mirror symmetry. Since the early 19th century, the origin of biomolecular handedness has been puzzling scientists. Nature's elegant bottom-up preference, however, sheds light on new concepts of generating, amplifying, and switching artificial polymers, supramolecules, liquid crystals, and organic crystals that can exhibit ambidextrous circular dichroism in the UV/Visible region with efficiency in production under milder ambient conditions. In the 1920s, Kipping, who first synthesized polysilanes with phenyl groups, had much interest in the handedness of inorganic and organic substances from 1898 to 1909 in his early research life. Polysilanes--which are soluble Si-Si bonded chain-like near-UV chromophores that carry a rich variety of organic groups--may become a bridge between animate and inanimate polymer systems. The present account focuses on several mirror symmetry breaking phenomena exemplified in polysilanes carrying chiral and/or achiral side groups, which are in isotropic dilute solution, as polymer particles dispersed in solution, and in a double layer film immobilized at the solid surface, and subtle differences in the helix, by dictating ultimately ultraweak chiral forces at subatomic, atomic, and molecular levels.

作者:Michiya, Fujiki

来源:Chemical record (New York, N.Y.) 2009 年 9卷 5期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Michiya, Fujiki
来源:
Chemical record (New York, N.Y.) 2009 年 9卷 5期
From elemental particles to human beings, matter and living worlds in our universe are dissymmetric with respect to mirror symmetry. Since the early 19th century, the origin of biomolecular handedness has been puzzling scientists. Nature's elegant bottom-up preference, however, sheds light on new concepts of generating, amplifying, and switching artificial polymers, supramolecules, liquid crystals, and organic crystals that can exhibit ambidextrous circular dichroism in the UV/Visible region with efficiency in production under milder ambient conditions. In the 1920s, Kipping, who first synthesized polysilanes with phenyl groups, had much interest in the handedness of inorganic and organic substances from 1898 to 1909 in his early research life. Polysilanes--which are soluble Si-Si bonded chain-like near-UV chromophores that carry a rich variety of organic groups--may become a bridge between animate and inanimate polymer systems. The present account focuses on several mirror symmetry breaking phenomena exemplified in polysilanes carrying chiral and/or achiral side groups, which are in isotropic dilute solution, as polymer particles dispersed in solution, and in a double layer film immobilized at the solid surface, and subtle differences in the helix, by dictating ultimately ultraweak chiral forces at subatomic, atomic, and molecular levels.