您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

ClC-1 plays an important part in the maintenance of membrane potential in the mammalian skeletal muscle. To investigate the phosphorylation sites responsible for the effect of PKC (protein kinase C) activator, we constructed 21 different ClC-1 mutants with mutations at predicted phosphorylation sites for PKC. The functional experiments were performed on both wild-type and mutant proteins (17 point mutants and 4 double mutants) expressed in Xenopus oocytes with two-electrode voltage-clamp recording. PMA (12-myristate 13-acetate), a PKC activator, caused a right shift of half-maximum activation potential (V(1/2)) significantly in the wild-type (from -42.9+/-4.4 to -13.7+/-1.7 mV; n = 8, P < 0.05) and most of the single mutants except the S892P (from -39.5+/-4.5 to -35.7+/-5.7 mV; n = 6) and S892D (from -10.2+/-4.9 to -9.6+/-3.5 mV; n = 4). S892D, a mutant mimicking PKC-mediated phosphorylation at position 892, can also mimic the effect of wild-type treated with PMA in V(1/2) value (-10.2+/-4.9 mV vs -13.7+/-1.7 mV, n = 4 - 8). However, S892A still had a significant response to PMA indicating that other sites responsible for PMA might exist. Thus double mutants are generated for the following analysis. The V(1/2) of double mutants, T891A/S892A, S892A/T893A and T891A/T893A, show no significant difference between before and after PMA treatment. We hypothesize that this structural modification results in the observed alteration of the gating properties of ClC-1 by PMA. In summary, our observations show that a C-terminal region Thr891-Ser892-Thr893, at least in part, responsible for the effect of PMA on ClC-1.

作者:Kuang-Ming, Hsiao;Ren-Yu, Huang;Pei-Hua, Tang;Min-Jon, Lin

来源:Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2010 年 25卷 6期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Kuang-Ming, Hsiao;Ren-Yu, Huang;Pei-Hua, Tang;Min-Jon, Lin
来源:
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2010 年 25卷 6期
ClC-1 plays an important part in the maintenance of membrane potential in the mammalian skeletal muscle. To investigate the phosphorylation sites responsible for the effect of PKC (protein kinase C) activator, we constructed 21 different ClC-1 mutants with mutations at predicted phosphorylation sites for PKC. The functional experiments were performed on both wild-type and mutant proteins (17 point mutants and 4 double mutants) expressed in Xenopus oocytes with two-electrode voltage-clamp recording. PMA (12-myristate 13-acetate), a PKC activator, caused a right shift of half-maximum activation potential (V(1/2)) significantly in the wild-type (from -42.9+/-4.4 to -13.7+/-1.7 mV; n = 8, P < 0.05) and most of the single mutants except the S892P (from -39.5+/-4.5 to -35.7+/-5.7 mV; n = 6) and S892D (from -10.2+/-4.9 to -9.6+/-3.5 mV; n = 4). S892D, a mutant mimicking PKC-mediated phosphorylation at position 892, can also mimic the effect of wild-type treated with PMA in V(1/2) value (-10.2+/-4.9 mV vs -13.7+/-1.7 mV, n = 4 - 8). However, S892A still had a significant response to PMA indicating that other sites responsible for PMA might exist. Thus double mutants are generated for the following analysis. The V(1/2) of double mutants, T891A/S892A, S892A/T893A and T891A/T893A, show no significant difference between before and after PMA treatment. We hypothesize that this structural modification results in the observed alteration of the gating properties of ClC-1 by PMA. In summary, our observations show that a C-terminal region Thr891-Ser892-Thr893, at least in part, responsible for the effect of PMA on ClC-1.