您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

Th1 cell-mediated immune responses at the site of active infection are important to restrict the growth of M. tuberculosis (MTB) and for the spontaneous resolution of patients with tuberculous pleurisy (TBP). In the present study, we found that without any stimulation, CD4(+) T cells in pleural fluid cells (PFCs) from patients with TBP expressed significantly higher levels of CD69 than PBMCs from patients with tuberculosis (TB) or healthy donors. CD4(+)CD69(+) T cells expressed T-bet and IL-12Rβ2. After stimulation with MTB-specific antigens, CD4(+)CD69(+) T cells expressed significantly higher levels of IFN-γ, IL-2 and TNF-α than CD4(+)CD69(-) T cells, demonstrating that CD4(+)CD69(+) T cells were MTB-specific Th1 cells. In addition, CD4(+)CD69(+) T cells were mostly polyfunctional Th1 cells that simultaneously produced IFN-γ, IL-2, TNF-α and displayed an effector or effector memory phenotype (CD45RA(-)CCR7(-)CD62L(-)CD27(-)). Moreover, the percentages of CD4(+)CD69(+) T cells were significantly and positively correlated with polyfunctional T cells. Interestingly, sorted CD4(+)CD69(+) but not CD4(+)CD69(-) fractions by flow cytometry produced IFN-γ, IL-2 and TNF-α that were significantly regulated by CD4(+)CD25(+) Treg cells. Taken together, based on the expression of CD69, we found a direct quantitative and qualitative method to detect and evaluate the in vivo generated MTB-specific polyfunctional CD4(+) T cells in PFCs from patients with TBP. This method can be used for the potential diagnosis and enrichment or isolation of MTB-specific Th1 cells in the investigations.

作者:Li, Li;Dan, Qiao;Xiaoying, Fu;Suihua, Lao;Xianlan, Zhang;Changyou, Wu

来源:PloS one 2011 年 6卷 8期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Li, Li;Dan, Qiao;Xiaoying, Fu;Suihua, Lao;Xianlan, Zhang;Changyou, Wu
来源:
PloS one 2011 年 6卷 8期
Th1 cell-mediated immune responses at the site of active infection are important to restrict the growth of M. tuberculosis (MTB) and for the spontaneous resolution of patients with tuberculous pleurisy (TBP). In the present study, we found that without any stimulation, CD4(+) T cells in pleural fluid cells (PFCs) from patients with TBP expressed significantly higher levels of CD69 than PBMCs from patients with tuberculosis (TB) or healthy donors. CD4(+)CD69(+) T cells expressed T-bet and IL-12Rβ2. After stimulation with MTB-specific antigens, CD4(+)CD69(+) T cells expressed significantly higher levels of IFN-γ, IL-2 and TNF-α than CD4(+)CD69(-) T cells, demonstrating that CD4(+)CD69(+) T cells were MTB-specific Th1 cells. In addition, CD4(+)CD69(+) T cells were mostly polyfunctional Th1 cells that simultaneously produced IFN-γ, IL-2, TNF-α and displayed an effector or effector memory phenotype (CD45RA(-)CCR7(-)CD62L(-)CD27(-)). Moreover, the percentages of CD4(+)CD69(+) T cells were significantly and positively correlated with polyfunctional T cells. Interestingly, sorted CD4(+)CD69(+) but not CD4(+)CD69(-) fractions by flow cytometry produced IFN-γ, IL-2 and TNF-α that were significantly regulated by CD4(+)CD25(+) Treg cells. Taken together, based on the expression of CD69, we found a direct quantitative and qualitative method to detect and evaluate the in vivo generated MTB-specific polyfunctional CD4(+) T cells in PFCs from patients with TBP. This method can be used for the potential diagnosis and enrichment or isolation of MTB-specific Th1 cells in the investigations.