您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览28

Thymosin β(4), a low molecular weight, naturally-occurring peptide plays a vital role in the repair and regeneration of injured cells and tissues. After injury, thymosin β(4), is released by platelets, macrophages and many other cell types to protect cells and tissues from further damage and reduce apoptosis, inflammation and microbial growth. Thymosin β(4) binds to actin and promotes cell migration, including the mobilization, migration, and differentiation of stem/progenitor cells, which form new blood vessels and regenerate the tissue. Thymosin β(4) also decreases the number of myofibroblasts in wounds, resulting in decreased scar formation and fibrosis.This article will cover the many thymosin β(4) activities that directly affect the repair and regeneration cascade with emphasis on its therapeutic uses and potential. Our approach has been to evaluate the basic biology of the molecule as well as its potential for clinical applications in the skin, eye, heart and brain.The considerable advances in our understanding of the functional biology and mechanisms of action of thymosin β(4) have provided the scientific foundation for ongoing and projected clinical trials in the treatment of dermal wounds, corneal injuries and in the regeneration and repair of heart and CNS tissue following ischemic insults and trauma.

作者:Allan L, Goldstein;Ewald, Hannappel;Gabriel, Sosne;Hynda K, Kleinman

来源:Expert opinion on biological therapy 2012 年 12卷 1期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:28
作者:
Allan L, Goldstein;Ewald, Hannappel;Gabriel, Sosne;Hynda K, Kleinman
来源:
Expert opinion on biological therapy 2012 年 12卷 1期
Thymosin β(4), a low molecular weight, naturally-occurring peptide plays a vital role in the repair and regeneration of injured cells and tissues. After injury, thymosin β(4), is released by platelets, macrophages and many other cell types to protect cells and tissues from further damage and reduce apoptosis, inflammation and microbial growth. Thymosin β(4) binds to actin and promotes cell migration, including the mobilization, migration, and differentiation of stem/progenitor cells, which form new blood vessels and regenerate the tissue. Thymosin β(4) also decreases the number of myofibroblasts in wounds, resulting in decreased scar formation and fibrosis.This article will cover the many thymosin β(4) activities that directly affect the repair and regeneration cascade with emphasis on its therapeutic uses and potential. Our approach has been to evaluate the basic biology of the molecule as well as its potential for clinical applications in the skin, eye, heart and brain.The considerable advances in our understanding of the functional biology and mechanisms of action of thymosin β(4) have provided the scientific foundation for ongoing and projected clinical trials in the treatment of dermal wounds, corneal injuries and in the regeneration and repair of heart and CNS tissue following ischemic insults and trauma.