您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

Onchocerciasis has historically been one of the leading causes of infectious blindness worldwide. It is endemic to tropical regions both in Africa and Latin America and in the Yemen. In Latin America, it is found in 13 foci located in 6 different countries. The epidemiologically most important focus of onchocerciasis in the Americas is located in a region spanning the border between Guatemala and Mexico. However, the Amazonian focus straddling the border of Venezuela and Brazil is larger in overall area because the Yanomami populations are scattered over a very large geographical region. Onchocerciasis is caused by infection with the filarial parasite Onchocerca volvulus. The infection is spread through the bites of an insect vector, black flies of the genus Simulium. In Africa, the major vectors are members of the S. damnosum complex, while numerous species serve as vectors of the parasite in Latin America. Latin America has had a long history of attempts to control onchocerciasis, stretching back almost 100 years. The earliest programmes used a strategy of surgical removal of the adult parasites from affected individuals. However, because many of the adult parasites lodge in undetectable and inaccessible areas of the body, the overall effect of this strategy on the prevalence of infection was relatively minor. In 1988, a new drug, ivermectin, was introduced that effectively killed the larval stage (microfilaria) of the parasite in infected humans. As the microfilaria is both the stage that is transmitted by the vector fly and the cause of most of the pathologies associated with the infection, ivermectin opened up a new strategy for the control of onchocerciasis. Concurrent with the use of ivermectin for the treatment of onchocerciasis, a number of sensitive new diagnostic tools were developed (both serological and nucleic acid based) that provided the efficiency, sensitivity and specificity necessary to monitor the decline and eventual elimination of onchocerciasis as a result of successful control. As a result of these advances, a strategy for the elimination of onchocerciasis was developed, based upon mass distribution of ivermectin to afflicted communities for periods lasting long enough to ensure that the parasite population was placed on the road to local elimination. This strategy has been applied for the past decade to the foci in Latin America by a programme overseen by the Onchocerciasis Elimination Program for the Americas (OEPA). The efforts spearheaded by OEPA have been very successful, eliminating ocular disease caused by O. volvulus, and eliminating and interrupting transmission of the parasite in 8 of the 13 foci in the region. As onchocerciasis approaches elimination in Latin America, several questions still need to be addressed. These include defining an acceptable upper limit for transmission in areas in which transmission is thought to have been suppressed (e.g. what is the maximum value for the upper bound of the 95

作者:Mario A, Rodríguez-Pérez;Thomas R, Unnasch;Olga, Real-Najarro

来源:Advances in parasitology 2011 年 77卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Mario A, Rodríguez-Pérez;Thomas R, Unnasch;Olga, Real-Najarro
来源:
Advances in parasitology 2011 年 77卷
Onchocerciasis has historically been one of the leading causes of infectious blindness worldwide. It is endemic to tropical regions both in Africa and Latin America and in the Yemen. In Latin America, it is found in 13 foci located in 6 different countries. The epidemiologically most important focus of onchocerciasis in the Americas is located in a region spanning the border between Guatemala and Mexico. However, the Amazonian focus straddling the border of Venezuela and Brazil is larger in overall area because the Yanomami populations are scattered over a very large geographical region. Onchocerciasis is caused by infection with the filarial parasite Onchocerca volvulus. The infection is spread through the bites of an insect vector, black flies of the genus Simulium. In Africa, the major vectors are members of the S. damnosum complex, while numerous species serve as vectors of the parasite in Latin America. Latin America has had a long history of attempts to control onchocerciasis, stretching back almost 100 years. The earliest programmes used a strategy of surgical removal of the adult parasites from affected individuals. However, because many of the adult parasites lodge in undetectable and inaccessible areas of the body, the overall effect of this strategy on the prevalence of infection was relatively minor. In 1988, a new drug, ivermectin, was introduced that effectively killed the larval stage (microfilaria) of the parasite in infected humans. As the microfilaria is both the stage that is transmitted by the vector fly and the cause of most of the pathologies associated with the infection, ivermectin opened up a new strategy for the control of onchocerciasis. Concurrent with the use of ivermectin for the treatment of onchocerciasis, a number of sensitive new diagnostic tools were developed (both serological and nucleic acid based) that provided the efficiency, sensitivity and specificity necessary to monitor the decline and eventual elimination of onchocerciasis as a result of successful control. As a result of these advances, a strategy for the elimination of onchocerciasis was developed, based upon mass distribution of ivermectin to afflicted communities for periods lasting long enough to ensure that the parasite population was placed on the road to local elimination. This strategy has been applied for the past decade to the foci in Latin America by a programme overseen by the Onchocerciasis Elimination Program for the Americas (OEPA). The efforts spearheaded by OEPA have been very successful, eliminating ocular disease caused by O. volvulus, and eliminating and interrupting transmission of the parasite in 8 of the 13 foci in the region. As onchocerciasis approaches elimination in Latin America, several questions still need to be addressed. These include defining an acceptable upper limit for transmission in areas in which transmission is thought to have been suppressed (e.g. what is the maximum value for the upper bound of the 95