您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览38

Cerebral microbleeds (CMBs) are a neuroimaging marker of small vessel disease (SVD) with relevance for understanding disease mechanisms in cerebrovascular disease, cognitive impairment, and normal aging. It is hypothesized that lobar CMBs are due to cerebral amyloid angiopathy (CAA) and deep CMBs are due to subcortical ischemic SVD. We tested this hypothesis using structural magnetic resonance imaging (MRI) markers of subcortical SVD and in vivo imaging of amyloid in patients with cognitive impairment.We included 226 patients: 89 with Alzheimer disease-related cognitive impairment (ADCI) and 137 with subcortical vascular cognitive impairment (SVCI). All subjects underwent amyloid imaging with [(11) C] Pittsburgh compound B (PiB) positron emission tomography, and MRI to detect CMBs and markers of subcortical SVD, including the volume of white matter hyperintensities (WMH) and the number of lacunes.Parietal and occipital lobar CMBs counts were higher in PiB(+) ADCI with moderate WMH than PiB(+) ADCI with minimal WMH, whereas PiB(-) patients with SVCI (ie, "pure" SVCI) showed both lobar and deep CMBs. In multivariate analyses of the whole cohort, WMH volume and lacuna counts were positively associated with both lobar and deep CMBs, whereas amyloid burden (PiB) was only associated with lobar CMBs. There was an interaction between lacuna burden and PiB retention on lobar (but not deep) CMBs (p<0.001).Our findings suggest that although deep CMBs are mainly linked to subcortical SVD, both subcortical SVD and amyloid-related pathologies (eg, CAA) contribute to the pathogenesis of lobar CMBs, at least in subjects with mixed lobar and deep CMBs. Furthermore, subcortical SVD and amyloid-related pathologies interact to increase the risk of lobar CMBs.

作者:Jae-Hyun, Park;Sang Won, Seo;Changsoo, Kim;Geon Ha, Kim;Hyun Jin, Noh;Sung Tae, Kim;Ki-Chang, Kwak;Uicheul, Yoon;Jong Min, Lee;Jong Weon, Lee;Ji Soo, Shin;Chi Hun, Kim;Young, Noh;Hanna, Cho;Hee Jin, Kim;Cindy W, Yoon;Seung Jun, Oh;Jae Seung, Kim;Yearn Seong, Choe;Kyung-Han, Lee;Jae-Hong, Lee;Michael, Ewers;Michael W, Weiner;David J, Werring;Duk L, Na

来源:Annals of neurology 2013 年 73卷 5期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:38
作者:
Jae-Hyun, Park;Sang Won, Seo;Changsoo, Kim;Geon Ha, Kim;Hyun Jin, Noh;Sung Tae, Kim;Ki-Chang, Kwak;Uicheul, Yoon;Jong Min, Lee;Jong Weon, Lee;Ji Soo, Shin;Chi Hun, Kim;Young, Noh;Hanna, Cho;Hee Jin, Kim;Cindy W, Yoon;Seung Jun, Oh;Jae Seung, Kim;Yearn Seong, Choe;Kyung-Han, Lee;Jae-Hong, Lee;Michael, Ewers;Michael W, Weiner;David J, Werring;Duk L, Na
来源:
Annals of neurology 2013 年 73卷 5期
Cerebral microbleeds (CMBs) are a neuroimaging marker of small vessel disease (SVD) with relevance for understanding disease mechanisms in cerebrovascular disease, cognitive impairment, and normal aging. It is hypothesized that lobar CMBs are due to cerebral amyloid angiopathy (CAA) and deep CMBs are due to subcortical ischemic SVD. We tested this hypothesis using structural magnetic resonance imaging (MRI) markers of subcortical SVD and in vivo imaging of amyloid in patients with cognitive impairment.We included 226 patients: 89 with Alzheimer disease-related cognitive impairment (ADCI) and 137 with subcortical vascular cognitive impairment (SVCI). All subjects underwent amyloid imaging with [(11) C] Pittsburgh compound B (PiB) positron emission tomography, and MRI to detect CMBs and markers of subcortical SVD, including the volume of white matter hyperintensities (WMH) and the number of lacunes.Parietal and occipital lobar CMBs counts were higher in PiB(+) ADCI with moderate WMH than PiB(+) ADCI with minimal WMH, whereas PiB(-) patients with SVCI (ie, "pure" SVCI) showed both lobar and deep CMBs. In multivariate analyses of the whole cohort, WMH volume and lacuna counts were positively associated with both lobar and deep CMBs, whereas amyloid burden (PiB) was only associated with lobar CMBs. There was an interaction between lacuna burden and PiB retention on lobar (but not deep) CMBs (p<0.001).Our findings suggest that although deep CMBs are mainly linked to subcortical SVD, both subcortical SVD and amyloid-related pathologies (eg, CAA) contribute to the pathogenesis of lobar CMBs, at least in subjects with mixed lobar and deep CMBs. Furthermore, subcortical SVD and amyloid-related pathologies interact to increase the risk of lobar CMBs.