您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览35

Pattern recognition is concerned with the development of systems that learn to solve a given problem using a set of example instances, each represented by a number of features. These problems include clustering, the grouping of similar instances; classification, the task of assigning a discrete label to a given instance; and dimensionality reduction, combining or selecting features to arrive at a more useful representation. The use of statistical pattern recognition algorithms in bioinformatics is pervasive. Classification and clustering are often applied to high-throughput measurement data arising from microarray, mass spectrometry and next-generation sequencing experiments for selecting markers, predicting phenotype and grouping objects or genes. Less explicitly, classification is at the core of a wide range of tools such as predictors of genes, protein function, functional or genetic interactions, etc., and used extensively in systems biology. A course on pattern recognition (or machine learning) should therefore be at the core of any bioinformatics education program. In this review, we discuss the main elements of a pattern recognition course, based on material developed for courses taught at the BSc, MSc and PhD levels to an audience of bioinformaticians, computer scientists and life scientists. We pay attention to common problems and pitfalls encountered in applications and in interpretation of the results obtained.

作者:Dick, de Ridder;Jeroen, de Ridder;Marcel J T, Reinders

来源:Briefings in bioinformatics 2013 年 14卷 5期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:35
作者:
Dick, de Ridder;Jeroen, de Ridder;Marcel J T, Reinders
来源:
Briefings in bioinformatics 2013 年 14卷 5期
标签:
bioinformatics classification clustering dimensionality reduction pattern recognition
Pattern recognition is concerned with the development of systems that learn to solve a given problem using a set of example instances, each represented by a number of features. These problems include clustering, the grouping of similar instances; classification, the task of assigning a discrete label to a given instance; and dimensionality reduction, combining or selecting features to arrive at a more useful representation. The use of statistical pattern recognition algorithms in bioinformatics is pervasive. Classification and clustering are often applied to high-throughput measurement data arising from microarray, mass spectrometry and next-generation sequencing experiments for selecting markers, predicting phenotype and grouping objects or genes. Less explicitly, classification is at the core of a wide range of tools such as predictors of genes, protein function, functional or genetic interactions, etc., and used extensively in systems biology. A course on pattern recognition (or machine learning) should therefore be at the core of any bioinformatics education program. In this review, we discuss the main elements of a pattern recognition course, based on material developed for courses taught at the BSc, MSc and PhD levels to an audience of bioinformaticians, computer scientists and life scientists. We pay attention to common problems and pitfalls encountered in applications and in interpretation of the results obtained.