您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览37

Abscisic acid (ABA) is an important signaling molecule with multiple biological functions in seed germination, plant development and stress responses. ALTERED MERISTEM PROGRAM 1 (AMP1), encoding a putative glutamate carboxypeptidase, is involved in plant growth, morphogenesis and seed dormancy. In this study, we assigned new role for AtAMP1 in ABA signaling and dehydration stress. AtAMP1 was transcriptionally down-regulated by ABA. Loss-of-function mutant of AtAMP1 (amp1-1, encoding a premature stop codon in AtAMP1) resulted in hypersensitive phenotypes toward ABA-mediated seed germination and primary root elongation. The amp1-1 mutant also exhibited enhanced dehydration resistance, as evidenced by the changes of electrolyte leakage (EL), water loss rate and survival rate. Notably, the amp1-1 lines exhibited higher expression levels of ABA-responsive genes (RAB18, RD29A and RD29B), higher concentration of proline and lower reactive oxygen species (ROS) levels (H2O2 and O2(-)) after ABA and dehydration treatments than those of wild type. Taken together, these observations indicated a negative role for AtAMP1 in ABA-mediated seed germination, seedling development and dehydration stress response.

作者:Haitao, Shi;Tiantian, Ye;Yanping, Wang;Zhulong, Chan

来源:Plant physiology and biochemistry : PPB 2013 年 67卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:37
作者:
Haitao, Shi;Tiantian, Ye;Yanping, Wang;Zhulong, Chan
来源:
Plant physiology and biochemistry : PPB 2013 年 67卷
标签:
ABA-responsive transcription AMP1 Abscisic acid Dehydration Reactive oxygen species
Abscisic acid (ABA) is an important signaling molecule with multiple biological functions in seed germination, plant development and stress responses. ALTERED MERISTEM PROGRAM 1 (AMP1), encoding a putative glutamate carboxypeptidase, is involved in plant growth, morphogenesis and seed dormancy. In this study, we assigned new role for AtAMP1 in ABA signaling and dehydration stress. AtAMP1 was transcriptionally down-regulated by ABA. Loss-of-function mutant of AtAMP1 (amp1-1, encoding a premature stop codon in AtAMP1) resulted in hypersensitive phenotypes toward ABA-mediated seed germination and primary root elongation. The amp1-1 mutant also exhibited enhanced dehydration resistance, as evidenced by the changes of electrolyte leakage (EL), water loss rate and survival rate. Notably, the amp1-1 lines exhibited higher expression levels of ABA-responsive genes (RAB18, RD29A and RD29B), higher concentration of proline and lower reactive oxygen species (ROS) levels (H2O2 and O2(-)) after ABA and dehydration treatments than those of wild type. Taken together, these observations indicated a negative role for AtAMP1 in ABA-mediated seed germination, seedling development and dehydration stress response.