您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览117

Advancing or delaying the light-dark (LD) cycle perturbs the circadian clock, which eventually recovers its original phase with respect to the new LD cycle. Readjustment of the clock occurs by shifting its phase in the same (orthodromic re-entrainment) or opposite direction (antidromic re-entrainment) as the shift in the LD cycle. To investigate circadian clock recovery after phase shifts of the LD cycle we use a detailed computational model previously proposed for the cellular regulatory network underlying the mammalian circadian clock. The model predicts the existence of a sharp threshold separating orthodromic from antidromic re-entrainment. In the vicinity of this threshold, resynchronization of the clock after a phase shift markedly slows down. The type of re-entrainment, the position of the threshold and the time required for resynchronization depend on multiple factors such as the autonomous period of the clock, the direction and magnitude of the phase shift, the clock biochemical kinetic parameters, and light intensity. Partitioning the phase shift into a series of smaller phases shifts decreases the impact on the recovery of the circadian clock. We use the phase response curve to predict the location of the threshold separating orthodromic and antidromic re-entrainment after advanced or delayed phase shifts of the LD cycle. The marked increase in recovery times predicted near the threshold could be responsible for the most severe disturbances of the human circadian clock associated with jet lag.

作者:Jean-Christophe, Leloup;Albert, Goldbeter

来源:Journal of theoretical biology 2013 年 333卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:117
作者:
Jean-Christophe, Leloup;Albert, Goldbeter
来源:
Journal of theoretical biology 2013 年 333卷
标签:
Circadian rhythms Computational model Jet lag Phase shift Re-entrainment
Advancing or delaying the light-dark (LD) cycle perturbs the circadian clock, which eventually recovers its original phase with respect to the new LD cycle. Readjustment of the clock occurs by shifting its phase in the same (orthodromic re-entrainment) or opposite direction (antidromic re-entrainment) as the shift in the LD cycle. To investigate circadian clock recovery after phase shifts of the LD cycle we use a detailed computational model previously proposed for the cellular regulatory network underlying the mammalian circadian clock. The model predicts the existence of a sharp threshold separating orthodromic from antidromic re-entrainment. In the vicinity of this threshold, resynchronization of the clock after a phase shift markedly slows down. The type of re-entrainment, the position of the threshold and the time required for resynchronization depend on multiple factors such as the autonomous period of the clock, the direction and magnitude of the phase shift, the clock biochemical kinetic parameters, and light intensity. Partitioning the phase shift into a series of smaller phases shifts decreases the impact on the recovery of the circadian clock. We use the phase response curve to predict the location of the threshold separating orthodromic and antidromic re-entrainment after advanced or delayed phase shifts of the LD cycle. The marked increase in recovery times predicted near the threshold could be responsible for the most severe disturbances of the human circadian clock associated with jet lag.