您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览68

Different signaling pathways are involved in tissue protection against ischemia reperfusion (IR) injury, among them mammalian target of rapamycin (mTOR) and related pathways have been examined in many recent studies. Present study evaluated the role of mTOR in remote ischemic preconditioning (RIPC) of hippocampus. Renal ischemia was induced (3 cycles of 5min occlusion and 5min reperfusion of unilateral renal artery) 24h before global brain ischemia (20min bilateral common carotid artery occlusion). Saline or rapamycin (mTOR inhibitor; 5mg/kg, i.p.) was injected 30min before RIPC. mTOR and phosphorylated mTOR (p-mTOR) expression, superoxide dismutase (SOD) activity and retention trial of passive avoidance test were determined 24h after global ischemia. Apoptosis and neuronal cell density were assessed 72h after hippocampal ischemia. RIPC decreased apoptosis (p<0.05 vs. IR), improved memory (p<0.05 vs. IR), and augmented p-mTOR expression and SOD activity after hippocampal ischemia (p<0.05 vs. IR). Rapamycin abolished all protective effects of RIPC (p<0.05 vs. RIPC+IR) suggesting a role for mTOR in RIPC induced hippocampal protection.

作者:Fatemeh, Zare Mehrjerdi;Nahid, Aboutaleb;Rouhollah, Habibey;Marjan, Ajami;Mansoureh, Soleimani;Maedeh, Arabian;Somayeh, Niknazar;Sayed, Hossein Davoodi;Hamidreza, Pazoki-Toroudi

来源:Brain research 2013 年 1526卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:68
作者:
Fatemeh, Zare Mehrjerdi;Nahid, Aboutaleb;Rouhollah, Habibey;Marjan, Ajami;Mansoureh, Soleimani;Maedeh, Arabian;Somayeh, Niknazar;Sayed, Hossein Davoodi;Hamidreza, Pazoki-Toroudi
来源:
Brain research 2013 年 1526卷
标签:
ATP sensitive potassium channels Apoptosis CCA Common carotid artery IR Ischemia reperfusion KATP MAPK Mammalian target of rapamycin Memory Mitochondrial ATP sensitive potassium channels Mitogen activated protein kinases PAT Passive avoidance test RIPC ROS Rapa Rapamycin Reactive Oxygen Species Remote ischemia preconditioning Remote ischemic preconditioning SOD Superoxide dismutase mKATP mTOR
Different signaling pathways are involved in tissue protection against ischemia reperfusion (IR) injury, among them mammalian target of rapamycin (mTOR) and related pathways have been examined in many recent studies. Present study evaluated the role of mTOR in remote ischemic preconditioning (RIPC) of hippocampus. Renal ischemia was induced (3 cycles of 5min occlusion and 5min reperfusion of unilateral renal artery) 24h before global brain ischemia (20min bilateral common carotid artery occlusion). Saline or rapamycin (mTOR inhibitor; 5mg/kg, i.p.) was injected 30min before RIPC. mTOR and phosphorylated mTOR (p-mTOR) expression, superoxide dismutase (SOD) activity and retention trial of passive avoidance test were determined 24h after global ischemia. Apoptosis and neuronal cell density were assessed 72h after hippocampal ischemia. RIPC decreased apoptosis (p<0.05 vs. IR), improved memory (p<0.05 vs. IR), and augmented p-mTOR expression and SOD activity after hippocampal ischemia (p<0.05 vs. IR). Rapamycin abolished all protective effects of RIPC (p<0.05 vs. RIPC+IR) suggesting a role for mTOR in RIPC induced hippocampal protection.