您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览10

Optimization of small interfering RNAs (siRNAs) is important in RNA interference (RNAi)-based therapeutic development. Some specific chemical modifications can control which siRNA strand is selected by the RNA-induced silencing complex (RISC) for gene silencing. Intended strand selection will increase potency and reduce off-target effects from the unintended strand. Sometimes, blocking RISC loading of the unintended strand leads to improved intended strand-silencing potency, but the generality of this phenomenon is unclear. Specifically, unlocked nucleic acid (UNA) modification of the 5' end of canonical (i.e., 19+2) siRNAs abrogates gene silencing of the modified strand, but the fate and potency of the unmodified strand has not been investigated. Here, we show that 5' UNA-modified siRNAs show improved silencing potency of the unmodified strand. We harness this advantageous property in a therapeutic context, where a limited target region in a conserved HIV 5' long terminal repeat U5 region would otherwise yield siRNAs with undesired strand selection properties and poor silencing. Applying 5' UNA modification to the unintended sense (S) strand of these otherwise poorly targeted siRNAs dramatically improves on-target silencing by the intended antisense (AS) strand in pNL4-3.luciferase studies. This study highlights the utility of 5' UNA siRNA modification in therapeutic contexts where siRNA sequence selection is constrained.Molecular Therapy-Nucleic Acids (2013) 2, e103; doi:10.1038/mtna.2013.36; published online 2 July 2013.

作者:Nicholas M, Snead;Julie R, Escamilla-Powers;John J, Rossi;Anton P, McCaffrey

来源:Molecular therapy. Nucleic acids 2013 年 2卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:10
作者:
Nicholas M, Snead;Julie R, Escamilla-Powers;John J, Rossi;Anton P, McCaffrey
来源:
Molecular therapy. Nucleic acids 2013 年 2卷
Optimization of small interfering RNAs (siRNAs) is important in RNA interference (RNAi)-based therapeutic development. Some specific chemical modifications can control which siRNA strand is selected by the RNA-induced silencing complex (RISC) for gene silencing. Intended strand selection will increase potency and reduce off-target effects from the unintended strand. Sometimes, blocking RISC loading of the unintended strand leads to improved intended strand-silencing potency, but the generality of this phenomenon is unclear. Specifically, unlocked nucleic acid (UNA) modification of the 5' end of canonical (i.e., 19+2) siRNAs abrogates gene silencing of the modified strand, but the fate and potency of the unmodified strand has not been investigated. Here, we show that 5' UNA-modified siRNAs show improved silencing potency of the unmodified strand. We harness this advantageous property in a therapeutic context, where a limited target region in a conserved HIV 5' long terminal repeat U5 region would otherwise yield siRNAs with undesired strand selection properties and poor silencing. Applying 5' UNA modification to the unintended sense (S) strand of these otherwise poorly targeted siRNAs dramatically improves on-target silencing by the intended antisense (AS) strand in pNL4-3.luciferase studies. This study highlights the utility of 5' UNA siRNA modification in therapeutic contexts where siRNA sequence selection is constrained.Molecular Therapy-Nucleic Acids (2013) 2, e103; doi:10.1038/mtna.2013.36; published online 2 July 2013.