您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览132

Tissue damage caused by ischemia-reperfusion (I/R) injury represents a serious event, which often leads to deterioration or even loss of organ function. I/R injury is associated with transient tissue oxygen deprivation due to vessel occlusion and a subsequent reperfusion period following restoration of blood flow. Initial tissue damage inflicted by ischemia is aggravated in the reperfusion period through mechanisms such as burst of reactive oxygen and nitrogen species and inflammatory reactions. I/R injury occurs during surgical interventions, organ transplantation, diseases such as myocardial infarction, circulatory shock, and toxic insults. Recently, microRNAs have come into focus as powerful regulators of gene expression and potential diagnostic tools during I/R injury. These small noncoding ribonucleotides (~22 nucleotides in length) posttranscriptionally target mRNAs, culminating in suppression of protein synthesis or increase in mRNA degradation, thus fundamentally influencing organ function. This review highlights the latest developments regarding the role of microRNAs in cardiac and renal I/R injury.

作者:Johan M, Lorenzen;Sandor, Batkai;Thomas, Thum

来源:Free radical biology & medicine 2013 年 64卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:132
作者:
Johan M, Lorenzen;Sandor, Batkai;Thomas, Thum
来源:
Free radical biology & medicine 2013 年 64卷
标签:
CaMKII DRP1 EPC FGFR2 Free radicals HIF-1α Heart Hsp20 I/R Ischemia–reperfusion injury KIF3B Kidney LIF MV MicroRNAs Ncx1 PDCD4 PIO PTEN RISC RNA-induced silencing complex ROCK1 ROS Rho-associated protein kinase 1 Sirt1 calmodulin kinase II dynamin-related protein-1 endothelial progenitor cell fibroblast growth factor receptor 2 heat shock protein 20 hypoxia-inducible factor 1α ischemia–reperfusion kinesin family member 3B leukemia inhibitory factor microvesicle phosphatase and tensin homologue pioglitazone programmed cell death protein 4 reactive oxygen species sirtuin 1 sodium/calcium exchanger 1
Tissue damage caused by ischemia-reperfusion (I/R) injury represents a serious event, which often leads to deterioration or even loss of organ function. I/R injury is associated with transient tissue oxygen deprivation due to vessel occlusion and a subsequent reperfusion period following restoration of blood flow. Initial tissue damage inflicted by ischemia is aggravated in the reperfusion period through mechanisms such as burst of reactive oxygen and nitrogen species and inflammatory reactions. I/R injury occurs during surgical interventions, organ transplantation, diseases such as myocardial infarction, circulatory shock, and toxic insults. Recently, microRNAs have come into focus as powerful regulators of gene expression and potential diagnostic tools during I/R injury. These small noncoding ribonucleotides (~22 nucleotides in length) posttranscriptionally target mRNAs, culminating in suppression of protein synthesis or increase in mRNA degradation, thus fundamentally influencing organ function. This review highlights the latest developments regarding the role of microRNAs in cardiac and renal I/R injury.