您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览35

An increasing number of studies have relied on brain imaging to assess the effects of cognitive training in healthy aging populations and in persons with early Alzheimer's disease or mild cognitive impairment (MCI). At the structural level, cognitive training in healthy aging individuals has been associated with increased brain volume, cortical thickness, and density and coherence of white matter tracts. At the functional level, task-related brain activation (using fMRI and PET) and fluorodeoxyglucose positron emission tomography (FDG-PET) were found to be sensitive to the effects of training. In persons with MCI, cognitive training increased brain metabolism and task-related brain activation, whereas healthy older adults showed patterns of increased and decreased activation. Further studies are required to generalize these findings to larger groups and to investigate more diverse training protocols. Research will also need to address important methodological issues regarding the use of biomarkers in cognitive aging, including reliability, clinical validity, and relevance to the pathophysiological process.

作者:Sylvie, Belleville;Louis, Bherer

来源:Current translational geriatrics and experimental gerontology reports 2012 年 1卷 2期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:35
作者:
Sylvie, Belleville;Louis, Bherer
来源:
Current translational geriatrics and experimental gerontology reports 2012 年 1卷 2期
标签:
Aging Alzheimer’s disease Biomarkers Brain imaging Cognitive intervention Cognitive training Mild cognitive impairment Structural imaging fMRI
An increasing number of studies have relied on brain imaging to assess the effects of cognitive training in healthy aging populations and in persons with early Alzheimer's disease or mild cognitive impairment (MCI). At the structural level, cognitive training in healthy aging individuals has been associated with increased brain volume, cortical thickness, and density and coherence of white matter tracts. At the functional level, task-related brain activation (using fMRI and PET) and fluorodeoxyglucose positron emission tomography (FDG-PET) were found to be sensitive to the effects of training. In persons with MCI, cognitive training increased brain metabolism and task-related brain activation, whereas healthy older adults showed patterns of increased and decreased activation. Further studies are required to generalize these findings to larger groups and to investigate more diverse training protocols. Research will also need to address important methodological issues regarding the use of biomarkers in cognitive aging, including reliability, clinical validity, and relevance to the pathophysiological process.