您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览17

Airway hyperresponsiveness (AHR) occurs in both asthma and COPD. In older people with asthma, AHR is associated with increased acinar ventilation heterogeneity, but it is unknown if this association exists in COPD. Thirty one COPD and 19 age-matched asthmatic subjects had measures of spirometry, lung volumes, exhaled nitric oxide, ventilation heterogeneity, and methacholine challenge. Indices of acinar (Sacin) and conducting (Scond) airway ventilation heterogeneity were calculated from the multiple breath nitrogen washout. Predictors of AHR were then determined. In COPD, AHR was predicted by lower Sacin and lower FVC (model r(2)=0.35, p=0.001). In asthma, AHR was predicted by higher Sacin and higher residual volume (model r(2)=0.62, p<0.001). These findings suggest that airway responsiveness in COPD and asthma is determined by underlying disease-specific processes, rather than a common pattern of physiological abnormality.

作者:Kate M, Hardaker;Sue R, Downie;Jessica A, Kermode;Norbert, Berend;Gregory G, King;Cheryl M, Salome

来源:Respiratory physiology & neurobiology 2013 年 189卷 1期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:17
作者:
Kate M, Hardaker;Sue R, Downie;Jessica A, Kermode;Norbert, Berend;Gregory G, King;Cheryl M, Salome
来源:
Respiratory physiology & neurobiology 2013 年 189卷 1期
标签:
Aging Airway hyperresponsiveness Chronic obstructive pulmonary disease Physiology Pulmonary mechanics
Airway hyperresponsiveness (AHR) occurs in both asthma and COPD. In older people with asthma, AHR is associated with increased acinar ventilation heterogeneity, but it is unknown if this association exists in COPD. Thirty one COPD and 19 age-matched asthmatic subjects had measures of spirometry, lung volumes, exhaled nitric oxide, ventilation heterogeneity, and methacholine challenge. Indices of acinar (Sacin) and conducting (Scond) airway ventilation heterogeneity were calculated from the multiple breath nitrogen washout. Predictors of AHR were then determined. In COPD, AHR was predicted by lower Sacin and lower FVC (model r(2)=0.35, p=0.001). In asthma, AHR was predicted by higher Sacin and higher residual volume (model r(2)=0.62, p<0.001). These findings suggest that airway responsiveness in COPD and asthma is determined by underlying disease-specific processes, rather than a common pattern of physiological abnormality.