您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览177

A wide range of Pharmaceuticals and Personal Care Products (PPCPs) are present in the environment, and many of their adverse effects are unknown. The emergence of new compounds or changes in regulations have led to dynamical studies of occurrence, impact and treatment, which consider geographical areas and trends in consumption and innovation in the pharmaceutical industry. A Quantitative study of Structure-Activity Relationship ((Q)SAR) was performed to assess the possible adverse effects of ninety six PPCPs and metabolites with negligible experimental data and establish a ranking of concern, which was supported by the EPA EPI Suite™ interface. The environmental and toxicological indexes, the persistence (P), the bioaccumulation (B), the toxicity (T) (extensive) and the occurrence in Spanish aquatic environments (O) (intensive) were evaluated. The most hazardous characteristics in the largest number of compounds were generated by the P index, followed by the T and B indexes. A high number of metabolites has a concern score equal to or greater than their parent compounds. Three PBT and OPBT rankings of concern were proposed using the total and partial ranking method (supported by a Hasse diagram) by the Decision Analysis by Ranking Techniques (DART) tool, which was recently recommended by the European Commission. An analysis of the sensibility of the relative weights of these indexes has been conducted. Hormones, antidepressants (and their metabolites), blood lipid regulators and all of the personal care products considered in this study were at the highest levels of risk according to the PBT and OPBT total rankings. Furthermore, when the OPBT partial ranking was performed, X-ray contrast media, H2 blockers and some antibiotics were included at the highest level of concern. It is important to improve and incorporate useful indexes for the predicted environmental impact of PPCPs and metabolites and thus focus experimental analysis on the compounds that require urgent attention.

作者:Sheyla, Ortiz de García;Gilberto Pinto, Pinto;Pedro A, García-Encina;Rubén I, Irusta Mata

来源:Journal of environmental management 2013 年 129卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:177
作者:
Sheyla, Ortiz de García;Gilberto Pinto, Pinto;Pedro A, García-Encina;Rubén I, Irusta Mata
来源:
Journal of environmental management 2013 年 129卷
标签:
(Q)SARs ATC B BCF BIOWIN? Bioaccumulation CAS ChV DART Decision Analysis by Ranking Techniques ECOSAR EMEA EPA EPI Suite? ERA Environmental Risk Assessment Estimation Programs Interface Suite? developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation European Medicines Agency European Regulation for Registration Evaluation Authorization and Restriction of Chemicals LC NOEC NSAIDs O OECD Occurrence Organization for Economic Co-operation and Development P PCPs PECs PERs PNEC POR PPCPs Persistence Personal Care Products PhACs Pharmaceutical and Personal Care products Pharmaceutical and personal care products Pharmaceutically Active Compounds Quantitative Structure–Activity Relationships REACH Ranking SARs SMILES SRC Simplified Molecular Input Line Entry System Structure–Activity Relationships Syracuse Research Corporation T Therapeutic Chemical Classification System Toxicity US EPA US EPA ecological structure–activity relationship United States Environmental Protection Agency WWTP Wastewater Treatment Plant bioaccumulation bioconcentration factor chemical abstracts chronic toxicity level of concern no-observed effect concentration non-steroidal anti-inflammatory drugs occurrence partial order ranking persistence physical–chemical property estimation routines predicted environmental concentrations predicted no effect concentration software by US EPA for estimates probability of rapid aerobic and anaerobic biodegradation
A wide range of Pharmaceuticals and Personal Care Products (PPCPs) are present in the environment, and many of their adverse effects are unknown. The emergence of new compounds or changes in regulations have led to dynamical studies of occurrence, impact and treatment, which consider geographical areas and trends in consumption and innovation in the pharmaceutical industry. A Quantitative study of Structure-Activity Relationship ((Q)SAR) was performed to assess the possible adverse effects of ninety six PPCPs and metabolites with negligible experimental data and establish a ranking of concern, which was supported by the EPA EPI Suite™ interface. The environmental and toxicological indexes, the persistence (P), the bioaccumulation (B), the toxicity (T) (extensive) and the occurrence in Spanish aquatic environments (O) (intensive) were evaluated. The most hazardous characteristics in the largest number of compounds were generated by the P index, followed by the T and B indexes. A high number of metabolites has a concern score equal to or greater than their parent compounds. Three PBT and OPBT rankings of concern were proposed using the total and partial ranking method (supported by a Hasse diagram) by the Decision Analysis by Ranking Techniques (DART) tool, which was recently recommended by the European Commission. An analysis of the sensibility of the relative weights of these indexes has been conducted. Hormones, antidepressants (and their metabolites), blood lipid regulators and all of the personal care products considered in this study were at the highest levels of risk according to the PBT and OPBT total rankings. Furthermore, when the OPBT partial ranking was performed, X-ray contrast media, H2 blockers and some antibiotics were included at the highest level of concern. It is important to improve and incorporate useful indexes for the predicted environmental impact of PPCPs and metabolites and thus focus experimental analysis on the compounds that require urgent attention.