您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览28

Task performance for behaviors that engage motor cognitive processes may be particularly sensitive to age-related changes. One well-studied model of cognitive motor function involves engagement of action selection (AS) processes. In young adults, task conditions that add AS demands result in increased preparation times and greater engagement of bilateral dorsal premotor (PMd) and parietal cortices. The current study investigated the behavioral and neural response to a change in motor cognitive demands in older adults through the addition of AS to a movement task. Sixteen older adults made a joystick movement under two conditions during functional magnetic resonance imaging. In the AS condition, participants moved right or left based on an abstract rule; in the execution only (EO) condition, participants moved in the same direction on every trial. Across participants, the AS condition, as compared to the EO condition, was associated with longer reaction time and increased activation of left inferior parietal lobule. Variability in behavioral response to the AS task between participants related to differences in brain function and structure. Overall, individuals with poorer AS task performance showed greater activation in left PMd and dorsolateral prefrontal cortex and decreased structural integrity of white matter tracts that connect sensorimotor, frontal, and parietal regions-key regions for AS task performance. Additionally, two distinct patterns of functional connectivity were found. Participants with a pattern of decreased primary motor-PMd connectivity in response to the AS condition, compared to those with a pattern of increased connectivity, were older and had poorer behavioral performance. These neural changes in response to increased motor cognitive demands may be a marker for age-related changes in the motor system and have an impact on the learning of novel, complex motor skills in older adults.

作者:Jill Campbell, Stewart;Xuan, Tran;Steven C, Cramer

来源:NeuroImage 2014 年 86卷

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:28
作者:
Jill Campbell, Stewart;Xuan, Tran;Steven C, Cramer
来源:
NeuroImage 2014 年 86卷
标签:
Action selection Aging Functional connectivity Imaging Movement
Task performance for behaviors that engage motor cognitive processes may be particularly sensitive to age-related changes. One well-studied model of cognitive motor function involves engagement of action selection (AS) processes. In young adults, task conditions that add AS demands result in increased preparation times and greater engagement of bilateral dorsal premotor (PMd) and parietal cortices. The current study investigated the behavioral and neural response to a change in motor cognitive demands in older adults through the addition of AS to a movement task. Sixteen older adults made a joystick movement under two conditions during functional magnetic resonance imaging. In the AS condition, participants moved right or left based on an abstract rule; in the execution only (EO) condition, participants moved in the same direction on every trial. Across participants, the AS condition, as compared to the EO condition, was associated with longer reaction time and increased activation of left inferior parietal lobule. Variability in behavioral response to the AS task between participants related to differences in brain function and structure. Overall, individuals with poorer AS task performance showed greater activation in left PMd and dorsolateral prefrontal cortex and decreased structural integrity of white matter tracts that connect sensorimotor, frontal, and parietal regions-key regions for AS task performance. Additionally, two distinct patterns of functional connectivity were found. Participants with a pattern of decreased primary motor-PMd connectivity in response to the AS condition, compared to those with a pattern of increased connectivity, were older and had poorer behavioral performance. These neural changes in response to increased motor cognitive demands may be a marker for age-related changes in the motor system and have an impact on the learning of novel, complex motor skills in older adults.