您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览59

Numerous studies have provided evidence regarding the involvement of protein S-nitrosylation in the progression of Alzheimer's disease (AD) pathology and its implication in the formation and accumulation of misfolded protein aggregates. The identification of S-nitrosylated proteins can be a major step toward the understanding of mechanisms leading to neuronal degeneration. The present study targeted S-nitrosylated proteins in AD hippocampus, substantia nigra and cortex using the following work-flow that combines S-nitrosothiol-specific antibody detection, classical biotin switch method labeled with fluorescence dye followed by electrospray ionization quadrupole time of flight tandem MS (ESI-QTOF MS/MS) identification. Endogenous nitrosocysteines were identified in 45 proteins, mainly involved in metabolism, signaling pathways, apoptosis and redox regulation as assigned by REACTOME and KEGG pathway database analysis. Superoxide dismutase (SOD2) [Mn], fructose-bisphosphate aldolase C (ALDOC) and voltage-dependent anion-selective channel protein 2 (VDAC2) showed differential S-nitrosylation signal, not previously reported in AD regions. Extensive neuronal atrophy with increased protein S-nitrosylation in AD regions is also evident from immunofluorescence studies using S-nitrosocysteine antibody. A number of plausible cysteine modification sites were predicted via Group-based Prediction System-S-nitrosothiols (GPS-SNO) 1.0 while STRING 8.3 analysis revealed functional annotations in the modified proteins. The findings are helpful in characterization of functional abnormalities and may facilitate the understanding of molecular mechanisms and biological function of S-nitrosylation in AD pathology.

作者:S, Zahid;R, Khan;M, Oellerich;N, Ahmed;A R, Asif

来源:Neuroscience 2014 年 256卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:59
作者:
S, Zahid;R, Khan;M, Oellerich;N, Ahmed;A R, Asif
来源:
Neuroscience 2014 年 256卷
标签:
2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 2DE ACT AD ALDO Alzheimer’s disease BSM ENO ESI-QTOF-MS/MS GAPDH GPS HEPES IP IPG LDH N-ethylmaleimide NADP NDDs NEM NO PEBP PTMs RNS S-nitrosocysteine S-nitrosothiols SNO SNO-Cys SOD2 TBST TPI TUBA TUBB Tris-buffered saline and Tween 20 VDAC2 WEB-based Gene SeT AnaLysis Toolkit WEBGESTALT actin aldolase biotin switch method cortex electrospray ionization quadrupole time of flight tandem MS enolase glyceraldehyde-3-phosphate dehydrogenase group-based prediction system hippocampus immobilized pH gradients immunoprecipitation lactate dehydrogenase neurodegenerative diseases nicotinamide adenine dinucleotide phosphate nitric oxide phosphatidylethanolamine-binding protein post-translational modifications protein S-nitrosylation proteomics reactive nitrogen species substantia nigra superoxide dismutase triose phosphate isomerase tubulin alpha tubulin beta two-dimensional electrophoresis voltage-dependent anion-selective channel protein 2
Numerous studies have provided evidence regarding the involvement of protein S-nitrosylation in the progression of Alzheimer's disease (AD) pathology and its implication in the formation and accumulation of misfolded protein aggregates. The identification of S-nitrosylated proteins can be a major step toward the understanding of mechanisms leading to neuronal degeneration. The present study targeted S-nitrosylated proteins in AD hippocampus, substantia nigra and cortex using the following work-flow that combines S-nitrosothiol-specific antibody detection, classical biotin switch method labeled with fluorescence dye followed by electrospray ionization quadrupole time of flight tandem MS (ESI-QTOF MS/MS) identification. Endogenous nitrosocysteines were identified in 45 proteins, mainly involved in metabolism, signaling pathways, apoptosis and redox regulation as assigned by REACTOME and KEGG pathway database analysis. Superoxide dismutase (SOD2) [Mn], fructose-bisphosphate aldolase C (ALDOC) and voltage-dependent anion-selective channel protein 2 (VDAC2) showed differential S-nitrosylation signal, not previously reported in AD regions. Extensive neuronal atrophy with increased protein S-nitrosylation in AD regions is also evident from immunofluorescence studies using S-nitrosocysteine antibody. A number of plausible cysteine modification sites were predicted via Group-based Prediction System-S-nitrosothiols (GPS-SNO) 1.0 while STRING 8.3 analysis revealed functional annotations in the modified proteins. The findings are helpful in characterization of functional abnormalities and may facilitate the understanding of molecular mechanisms and biological function of S-nitrosylation in AD pathology.