您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

In our previous studies in grass carp pituitary cells, local production of luteinizing hormone (LH) was shown to induce growth hormone (GH) production and gene expression, which constitutes a major component of the "intrapituitary feedback loop" regulating GH secretion and synthesis via autocrine/paracrine interactions between gonadotrophs and somatotrophs in the carp pituitary. To further investigate the signaling mechanisms mediating LH action at the transcriptional level, promoter studies were performed in GH3 cells co-transfected with the expression vector for carp LH receptor and luciferase-expressing reporter constructs with grass carp GH promoter. In this cell model, treatment with human chorionic gonadotropin (hCG) was effective in increasing GH promoter activity and the responsive sequence was mapped to position -616 and -572 of the grass carp GH promoter. GH promoter activation induced by hCG occurred with concurrent rise in cAMP production, CREB phosphorylation, and could be inhibited by inactivation of adenylate cyclase (AC), PKA, MEK1/2, P(38) MAPK, PI3K and mTOR. AC activation, presumably via cAMP production, could mimic hCG-induced CREB phosphorylation and GH promoter activity, and these stimulatory effects were also sensitive to the blockade of PKA-, MAPK- and PI3K- dependent cascades. These results, as a whole, suggest that LH receptor activation in the carp pituitary may trigger GH gene transcription through CREB phosphorylation as a result of the functional crosstalk of the cAMP/PKA pathway with MAPK-and PI3K-dependent cascades.

作者:Caiyun, Sun;Mulan, He;Wendy K W, Ko;Anderson O L, Wong

来源:Molecular and cellular endocrinology 2014 年 382卷 2期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Caiyun, Sun;Mulan, He;Wendy K W, Ko;Anderson O L, Wong
来源:
Molecular and cellular endocrinology 2014 年 382卷 2期
标签:
CA CREB DN GH GH3 cell Gene transcription Grass carp Growth hormone LHR Luteinizing hormone receptor MAPK PI3 K PKA Signal transduction pathway constitutively active mutant cyclic AMP response element binding protein dominant negative mutant growth hormone hCG human chorionic gonadotropin luteinizing hormone receptor mitogen-activated protein kinase phosphoinositide 3-kinase protein kinase A
In our previous studies in grass carp pituitary cells, local production of luteinizing hormone (LH) was shown to induce growth hormone (GH) production and gene expression, which constitutes a major component of the "intrapituitary feedback loop" regulating GH secretion and synthesis via autocrine/paracrine interactions between gonadotrophs and somatotrophs in the carp pituitary. To further investigate the signaling mechanisms mediating LH action at the transcriptional level, promoter studies were performed in GH3 cells co-transfected with the expression vector for carp LH receptor and luciferase-expressing reporter constructs with grass carp GH promoter. In this cell model, treatment with human chorionic gonadotropin (hCG) was effective in increasing GH promoter activity and the responsive sequence was mapped to position -616 and -572 of the grass carp GH promoter. GH promoter activation induced by hCG occurred with concurrent rise in cAMP production, CREB phosphorylation, and could be inhibited by inactivation of adenylate cyclase (AC), PKA, MEK1/2, P(38) MAPK, PI3K and mTOR. AC activation, presumably via cAMP production, could mimic hCG-induced CREB phosphorylation and GH promoter activity, and these stimulatory effects were also sensitive to the blockade of PKA-, MAPK- and PI3K- dependent cascades. These results, as a whole, suggest that LH receptor activation in the carp pituitary may trigger GH gene transcription through CREB phosphorylation as a result of the functional crosstalk of the cAMP/PKA pathway with MAPK-and PI3K-dependent cascades.