您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

Guard cells regulate stomatal pore size through integration of both endogenous and environmental signals; they are widely recognized as providing a key switching mechanism that maximizes both the efficient use of water and rates of CO₂ exchange for photosynthesis; this is essential for the adaptation of plants to water stress. Reactive oxygen species (ROS) are widely considered to be an important player in guard cell signalling. In this review, we focus on recent progress concerning the role of ROS as signal molecules in controlling stomatal movement, the interaction between ROS and intrinsic and environmental response pathways, the specificity of ROS signalling, and how ROS signals are sensed and relayed. However, the picture of ROS-mediated signalling is still fragmented and the issues of ROS sensing and the specificity of ROS signalling remain unclear. Here, we review some recent advances in our understanding of ROS signalling in guard cells, with an emphasis on the main players known to interact with abscisic acid signalling.

作者:Yuwei, Song;Yuchen, Miao;Chun-Peng, Song

来源:The New phytologist 2014 年 201卷 4期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Yuwei, Song;Yuchen, Miao;Chun-Peng, Song
来源:
The New phytologist 2014 年 201卷 4期
标签:
abscisic acid (ABA) guard cells hydrogen peroxide (H2O2) reactive oxygen species (ROS) signal transduction
Guard cells regulate stomatal pore size through integration of both endogenous and environmental signals; they are widely recognized as providing a key switching mechanism that maximizes both the efficient use of water and rates of CO₂ exchange for photosynthesis; this is essential for the adaptation of plants to water stress. Reactive oxygen species (ROS) are widely considered to be an important player in guard cell signalling. In this review, we focus on recent progress concerning the role of ROS as signal molecules in controlling stomatal movement, the interaction between ROS and intrinsic and environmental response pathways, the specificity of ROS signalling, and how ROS signals are sensed and relayed. However, the picture of ROS-mediated signalling is still fragmented and the issues of ROS sensing and the specificity of ROS signalling remain unclear. Here, we review some recent advances in our understanding of ROS signalling in guard cells, with an emphasis on the main players known to interact with abscisic acid signalling.