您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览33

Sunlight-excitable orange or red persistent oxide phosphors with excellent performance are still in great need. Herein, an intense orange-red Sr3-xBaxSiO5:Eu(2+),Dy(3+) persistent luminescence phosphor was successfully developed by a two-step design strategy. The XRD patterns, photoluminescence excitation and emission spectra, and the thermoluminescence spectra were investigated in detail. By adding non-equivalent trivalent rare earth co-dopants to introduce foreign trapping centers, the persistent luminescence performance of Eu(2+) in Sr3SiO5 was significantly modified. The yellow persistent emission intensity of Eu(2+) was greatly enhanced by a factor of 4.5 in Sr3SiO5:Eu(2+),Nd(3+) compared with the previously reported Sr3SiO5:Eu(2+), Dy(3+). Furthermore, Sr ions were replaced with equivalent Ba to give Sr3-xBaxSiO5 :Eu(2+),Dy(3+) phosphor, which shows yellow-to-orange-red tunable persistent emissions from λ=570 to 591 nm as x is increased from 0 to 0.6. Additionally, the persistent emission intensity of Eu(2+) is significantly improved by a factor of 2.7 in Sr3-xBaxSiO5 :Eu(2+),Dy(3+) (x=0.2) compared with Sr3SiO5 :Eu(2+),Dy(3+). A possible mechanism for enhanced and tunable persistent luminescence behavior of Eu(2+) in Sr3-xBaxSiO5:Eu(2+),RE(3+) (RE=rare earth) is also proposed and discussed.

作者:Ye, Li;Baohong, Li;Chenchen, Ni;Shuxia, Yuan;Jing, Wang;Qiang, Tang;Qiang, Su

来源:Chemistry, an Asian journal 2014 年 9卷 2期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:33
作者:
Ye, Li;Baohong, Li;Chenchen, Ni;Shuxia, Yuan;Jing, Wang;Qiang, Tang;Qiang, Su
来源:
Chemistry, an Asian journal 2014 年 9卷 2期
标签:
persistent luminescence rare earths silicates thermoluminescence
Sunlight-excitable orange or red persistent oxide phosphors with excellent performance are still in great need. Herein, an intense orange-red Sr3-xBaxSiO5:Eu(2+),Dy(3+) persistent luminescence phosphor was successfully developed by a two-step design strategy. The XRD patterns, photoluminescence excitation and emission spectra, and the thermoluminescence spectra were investigated in detail. By adding non-equivalent trivalent rare earth co-dopants to introduce foreign trapping centers, the persistent luminescence performance of Eu(2+) in Sr3SiO5 was significantly modified. The yellow persistent emission intensity of Eu(2+) was greatly enhanced by a factor of 4.5 in Sr3SiO5:Eu(2+),Nd(3+) compared with the previously reported Sr3SiO5:Eu(2+), Dy(3+). Furthermore, Sr ions were replaced with equivalent Ba to give Sr3-xBaxSiO5 :Eu(2+),Dy(3+) phosphor, which shows yellow-to-orange-red tunable persistent emissions from λ=570 to 591 nm as x is increased from 0 to 0.6. Additionally, the persistent emission intensity of Eu(2+) is significantly improved by a factor of 2.7 in Sr3-xBaxSiO5 :Eu(2+),Dy(3+) (x=0.2) compared with Sr3SiO5 :Eu(2+),Dy(3+). A possible mechanism for enhanced and tunable persistent luminescence behavior of Eu(2+) in Sr3-xBaxSiO5:Eu(2+),RE(3+) (RE=rare earth) is also proposed and discussed.