您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览35

Chitosan, as a unique positively charged polysaccharide, has been one of the most popular biopolymers for development of drug delivery systems for various applications, due to its promising properties, including high biocompatibility, excellent biodegradability, low toxicity, as well as abundant availability and low production cost. Since last decade, increasing attention has been attracted by delivery systems fabricated from natural biopolymer-based polyelectrolyte complexes (PEC), formed by electrostatic interactions between two oppositely charged biopolymers. In order to tailor specific applications of chitosan-based PEC drug delivery systems, various forms have been developed in recent years, including nanoparticles, microparticles, beads, tablets, gels, as well as films and membranes. The present review focuses on the recent advances in drug delivery applications of chitosan-based PEC with other natural polysaccharides, including alginate, hyaluronic acid, pectin, carrageenan, xanthan gum, gellan gum, gum arabic, and carboxymethyl cellulose, etc. The fabrication techniques, characterizations, as well as in vitro and in vivo evaluations of each PEC delivery system are discussed in detail.

作者:Yangchao, Luo;Qin, Wang

来源:International journal of biological macromolecules 2014 年 64卷

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:35
作者:
Yangchao, Luo;Qin, Wang
来源:
International journal of biological macromolecules 2014 年 64卷
标签:
Chitosan Controlled release Drug delivery Polyelectrolyte complex Polysaccharides
Chitosan, as a unique positively charged polysaccharide, has been one of the most popular biopolymers for development of drug delivery systems for various applications, due to its promising properties, including high biocompatibility, excellent biodegradability, low toxicity, as well as abundant availability and low production cost. Since last decade, increasing attention has been attracted by delivery systems fabricated from natural biopolymer-based polyelectrolyte complexes (PEC), formed by electrostatic interactions between two oppositely charged biopolymers. In order to tailor specific applications of chitosan-based PEC drug delivery systems, various forms have been developed in recent years, including nanoparticles, microparticles, beads, tablets, gels, as well as films and membranes. The present review focuses on the recent advances in drug delivery applications of chitosan-based PEC with other natural polysaccharides, including alginate, hyaluronic acid, pectin, carrageenan, xanthan gum, gellan gum, gum arabic, and carboxymethyl cellulose, etc. The fabrication techniques, characterizations, as well as in vitro and in vivo evaluations of each PEC delivery system are discussed in detail.