您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览50

The label-free electrical detection of the binding of antibodies and antigens of avian influenza (AI) and human immunodeficiency (HIV) viruses is demonstrated through an underlap-embedded silicon (Si) nanowire field-effect transistor. The proposed sensor was fabricated on a silicon bulk wafer by a top-down process. Specifically, a Si nanowire was fabricated by a combined isotropic and anisotropic patterning technique, which is one route plasma etching process. The sensor was fabricated by a self-aligned process to the gate with tilted implantation, and it allows precise control of the underlap region. This was problematic in earlier underlap field-effect transistors fabricated by a conventional gate-last process. As a sensing metric to detect the binding of a targeted antibody, the transfer characteristic change was traced. Before and after differences between the antibody binding results were caused by changes in the channel potential on the underlap region due to the charge effect arising from the biomolecules; this is also supported by a simulation. Furthermore, the multiplex detection of AI and HIV is demonstrated, showing distinctive selectivity in each case. Thus, the proposed device has inherent benefits for the label-free, electrical, and multiplex detection of biomolecules. Moreover, its processes are compatible with commercialized technology presently used to fabricate semiconductor devices. This advantage is attractive for those involved in the construction of a point-of-care testing (POCT) system on a chip involving simple, low-cost and low-risk fabrication processes of novel structures and materials.

作者:Jee-Yeon, Kim;Jae-Hyuk, Ahn;Dong-Il, Moon;Tae Jung, Park;Sang Yup, Lee;Yang-Kyu, Choi

来源:Biosensors & bioelectronics 2014 年 55卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:50
作者:
Jee-Yeon, Kim;Jae-Hyuk, Ahn;Dong-Il, Moon;Tae Jung, Park;Sang Yup, Lee;Yang-Kyu, Choi
来源:
Biosensors & bioelectronics 2014 年 55卷
标签:
Avian influenza Electrical biosensor Field-effect transistor Human immunodeficiency virus Label-free detection Underlap field-effect transistor
The label-free electrical detection of the binding of antibodies and antigens of avian influenza (AI) and human immunodeficiency (HIV) viruses is demonstrated through an underlap-embedded silicon (Si) nanowire field-effect transistor. The proposed sensor was fabricated on a silicon bulk wafer by a top-down process. Specifically, a Si nanowire was fabricated by a combined isotropic and anisotropic patterning technique, which is one route plasma etching process. The sensor was fabricated by a self-aligned process to the gate with tilted implantation, and it allows precise control of the underlap region. This was problematic in earlier underlap field-effect transistors fabricated by a conventional gate-last process. As a sensing metric to detect the binding of a targeted antibody, the transfer characteristic change was traced. Before and after differences between the antibody binding results were caused by changes in the channel potential on the underlap region due to the charge effect arising from the biomolecules; this is also supported by a simulation. Furthermore, the multiplex detection of AI and HIV is demonstrated, showing distinctive selectivity in each case. Thus, the proposed device has inherent benefits for the label-free, electrical, and multiplex detection of biomolecules. Moreover, its processes are compatible with commercialized technology presently used to fabricate semiconductor devices. This advantage is attractive for those involved in the construction of a point-of-care testing (POCT) system on a chip involving simple, low-cost and low-risk fabrication processes of novel structures and materials.