您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览0

A novel type of reduction-sensitive starch nanoparticles was prepared via the reversed-phase microemulsion method by using crosslinker, N,N-bisacryloylcystamine (BAC) with the disulfide linkages, which was specifically cleaved by dithiothreitol (DTT). Starch nanoparticles had a spherical morphology with a small size of 40 nm in the optimal condition. The influences of process parameters (starch amount, surfactant amount and oil/water (O/W) ratio) on the size of starch nanoparticles were studied by dynamic light scattering (DLS). BAC crosslinked starch nanoparticles were degraded into oligomers with the reducing agent of DTT due to the cleavage of the disulfide linkages. A model drug 5-aminosalicylic acid (5-ASA) could be loaded efficiently into starch nanoparticles and the in vitro drug release behaviors were also studied. The results suggested that the disulfide crosslinked starch nanoparticles exhibited an accelerated drug release behavior in the presence of DTT. In vitro methyl thiazolyl tetrazolium (MTT) assays indicated that BAC crosslinked starch nanoparticles had a good biocompatibility when cocultured with human HeLa cancer cells. Hence, with excellent biocompatibility and biodegradability, and rapid drug release in response to DTT, BAC crosslinked starch nanoparticles showed a great potential as a biomaterial carrier for the application of drug controlled release. In contrast to BAC crosslinked starch nanoparticles, N,N-methylenebisacrylamine (MBA) crosslinked starch nanoparticles were prepared as the control without the disulfide linkages.

作者:Jinlong, Yang;Yinjuan, Huang;Chunmei, Gao;Mingzhu, Liu;Xinjie, Zhang

来源:Colloids and surfaces. B, Biointerfaces 2014 年 115卷

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:0
作者:
Jinlong, Yang;Yinjuan, Huang;Chunmei, Gao;Mingzhu, Liu;Xinjie, Zhang
来源:
Colloids and surfaces. B, Biointerfaces 2014 年 115卷
标签:
BAC Drug release Reduction-sensitive Starch nanoparticles
A novel type of reduction-sensitive starch nanoparticles was prepared via the reversed-phase microemulsion method by using crosslinker, N,N-bisacryloylcystamine (BAC) with the disulfide linkages, which was specifically cleaved by dithiothreitol (DTT). Starch nanoparticles had a spherical morphology with a small size of 40 nm in the optimal condition. The influences of process parameters (starch amount, surfactant amount and oil/water (O/W) ratio) on the size of starch nanoparticles were studied by dynamic light scattering (DLS). BAC crosslinked starch nanoparticles were degraded into oligomers with the reducing agent of DTT due to the cleavage of the disulfide linkages. A model drug 5-aminosalicylic acid (5-ASA) could be loaded efficiently into starch nanoparticles and the in vitro drug release behaviors were also studied. The results suggested that the disulfide crosslinked starch nanoparticles exhibited an accelerated drug release behavior in the presence of DTT. In vitro methyl thiazolyl tetrazolium (MTT) assays indicated that BAC crosslinked starch nanoparticles had a good biocompatibility when cocultured with human HeLa cancer cells. Hence, with excellent biocompatibility and biodegradability, and rapid drug release in response to DTT, BAC crosslinked starch nanoparticles showed a great potential as a biomaterial carrier for the application of drug controlled release. In contrast to BAC crosslinked starch nanoparticles, N,N-methylenebisacrylamine (MBA) crosslinked starch nanoparticles were prepared as the control without the disulfide linkages.