您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览30

To provide an updated review on current genetic aspects possibly affecting essential hypertension (EH), and to further elucidate their role in EH.We searched for genetic and epigenetic factors in major studies associated with EH between Jan 2008-Oct 2013 using PubMed. We limited our search to reviews that discussed mostly human studies, and were accessible through the university online resource. We found 11 genome wide association studies (GWAS), as well as five methylation and three miRNA studies that fit our search criteria. A distinction was not made between genes with protective effects or negative effects, as this article is only meant to be a summary of genes associated with any aspect of EH.We found 130 genes from the studies that met our inclusion/exclusion criteria. Of note, genes with multiple study references include: STK39, CYP17A1, MTHFR-NPPA, MTHFR-NPPB, ATP2B1, CSK, ZNF652, UMOD, CACNB2, PLEKHA7, SH2B3, TBX3-TBX5, ULK4, CSK-ULK3, CYP1A2, NT5C2, CYP171A, PLCD3, SH2B3, ATXN2, CACNB2, PLEKHA7, SH2B3, TBX3-TBX5, ULK4, and HFE. The following genes overlapped between the genetic studies and epigenetic studies: WNK4 and BDKRB2. Several of the identified genes were found to have functions associated with EH. Many epigenetic factors were also correlated with EH. Of the epigenetic factors, there were no articles discussing siRNA and its effects on EH that met the search criteria, thus the topic was not included in this review. Among the miRNA targets found to be associated with EH, many of the genes involved were also identified in the GWAS studies.Genetic hypertension risk algorithms could be developed in the future but may be of limited benefit due to the multi-factorial nature of EH. With emerging technologies, like next-generation sequencing, more direct causal relationships between genetic and epigenetic factors affecting EH will likely be discovered creating a tremendous potential for personalized medicine using pharmacogenomics.

作者:Aniket, Natekar;Randi L, Olds;Meghann W, Lau;Kathleen, Min;Karra, Imoto;Thomas P, Slavin

来源:World journal of cardiology 2014 年 6卷 5期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:30
作者:
Aniket, Natekar;Randi L, Olds;Meghann W, Lau;Kathleen, Min;Karra, Imoto;Thomas P, Slavin
来源:
World journal of cardiology 2014 年 6卷 5期
标签:
Epigenomics Essential hypertension Genes Genome-wide association study MicroRNAs
To provide an updated review on current genetic aspects possibly affecting essential hypertension (EH), and to further elucidate their role in EH.We searched for genetic and epigenetic factors in major studies associated with EH between Jan 2008-Oct 2013 using PubMed. We limited our search to reviews that discussed mostly human studies, and were accessible through the university online resource. We found 11 genome wide association studies (GWAS), as well as five methylation and three miRNA studies that fit our search criteria. A distinction was not made between genes with protective effects or negative effects, as this article is only meant to be a summary of genes associated with any aspect of EH.We found 130 genes from the studies that met our inclusion/exclusion criteria. Of note, genes with multiple study references include: STK39, CYP17A1, MTHFR-NPPA, MTHFR-NPPB, ATP2B1, CSK, ZNF652, UMOD, CACNB2, PLEKHA7, SH2B3, TBX3-TBX5, ULK4, CSK-ULK3, CYP1A2, NT5C2, CYP171A, PLCD3, SH2B3, ATXN2, CACNB2, PLEKHA7, SH2B3, TBX3-TBX5, ULK4, and HFE. The following genes overlapped between the genetic studies and epigenetic studies: WNK4 and BDKRB2. Several of the identified genes were found to have functions associated with EH. Many epigenetic factors were also correlated with EH. Of the epigenetic factors, there were no articles discussing siRNA and its effects on EH that met the search criteria, thus the topic was not included in this review. Among the miRNA targets found to be associated with EH, many of the genes involved were also identified in the GWAS studies.Genetic hypertension risk algorithms could be developed in the future but may be of limited benefit due to the multi-factorial nature of EH. With emerging technologies, like next-generation sequencing, more direct causal relationships between genetic and epigenetic factors affecting EH will likely be discovered creating a tremendous potential for personalized medicine using pharmacogenomics.