您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览33

With the aim to find novel therapeutical approaches for triple-negative breast cancer (TNBC) treatment, we have developed a powder for i.v. injection based on cyclodextrins and docetaxel (DTX)-loaded polyethyleneglycol-poly(epsilon-caprolactone) nanoparticles (DTX-NPs). Nanoparticles are designed to concentrate at tumor level by enhanced permeability and retention effect and release drug cargo at a sustained rate in the blood and in tumor interstitium. DTX-NPs of around 70 nm, shielding proteins and allowing a sustained DTX release for about 30 days, were produced by melting sonication technique. DTX-NPs were associated to hydroxypropyl-β-cyclodextrin to give a powder for injection with excellent dispersibility and suitable for i.v. administration. DTX-NPs were as efficient as free DTX in inhibiting cell growth of MDA-MB231 cells, even at low concentrations, and displayed a comparable in vivo antitumor efficacy and better survival in a TNBC animal model as compared with DTX commercial formulation (Taxotere(®)). In conclusion, PEGylated biodegradable DTX-NPs highlighted their potential in the treatment of aggressive TNBC providing a foundation for future clinical studies.

作者:Giuseppe, Palma;Claudia, Conte;Antonio, Barbieri;Sabrina, Bimonte;Antonio, Luciano;Domenica, Rea;Francesca, Ungaro;Pasquale, Tirino;Fabiana, Quaglia;Claudio, Arra

来源:International journal of pharmaceutics 2014 年 473卷 1-2期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:33
作者:
Giuseppe, Palma;Claudia, Conte;Antonio, Barbieri;Sabrina, Bimonte;Antonio, Luciano;Domenica, Rea;Francesca, Ungaro;Pasquale, Tirino;Fabiana, Quaglia;Claudio, Arra
来源:
International journal of pharmaceutics 2014 年 473卷 1-2期
标签:
Docetaxel PEGylated nanoparticles Powder for injection Sustained release Triple-negative breast cancer
With the aim to find novel therapeutical approaches for triple-negative breast cancer (TNBC) treatment, we have developed a powder for i.v. injection based on cyclodextrins and docetaxel (DTX)-loaded polyethyleneglycol-poly(epsilon-caprolactone) nanoparticles (DTX-NPs). Nanoparticles are designed to concentrate at tumor level by enhanced permeability and retention effect and release drug cargo at a sustained rate in the blood and in tumor interstitium. DTX-NPs of around 70 nm, shielding proteins and allowing a sustained DTX release for about 30 days, were produced by melting sonication technique. DTX-NPs were associated to hydroxypropyl-β-cyclodextrin to give a powder for injection with excellent dispersibility and suitable for i.v. administration. DTX-NPs were as efficient as free DTX in inhibiting cell growth of MDA-MB231 cells, even at low concentrations, and displayed a comparable in vivo antitumor efficacy and better survival in a TNBC animal model as compared with DTX commercial formulation (Taxotere(®)). In conclusion, PEGylated biodegradable DTX-NPs highlighted their potential in the treatment of aggressive TNBC providing a foundation for future clinical studies.