您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览49

A 12-year-old girl, Emily, with complex communication needs and severe physical limitations, controlled a Lego robot from a speech-generating device (SGD) to do various "hands-on" academic activities. Emily's teacher and assistive technology (AT) team thought that controlling a robot would motivate Emily to "use her SGD more".A descriptive case study was used because the integration of communication and manipulation technologies is not yet understood. Target activities and goals were chosen by Emily's teacher and AT team. Emily performed several manipulative math activities and engaged in an "acting" activity aimed at increasing her message length. The competency skills needed to control a robot from the SGD were examined, as well as stakeholder satisfaction with the robot system.Emily generated up to 0.4 communication events and 7 robot commands per minute in the activities. Her length of utterance was usually one-word long, but she generated two- and three-word utterances during some activities. Observations of Emily informed a framework to describe the competency skills needed to use SGDs to control robots. Emily and her teacher expressed satisfaction with robot use.Robot use could motivate students to build SGD operational skills and learn educational concepts. Implications for Rehabilitation Controlling a robot from a speech-generating device (SGD) could increase students' motivation, engagement and understanding in learning educational concepts, because of the hands-on enactive approach. The robot and SGD system was acceptable to the participant and teacher and elicited positive comments from classmates. Thus, it may provide a way for children with disabilities to link with the curriculum and with other students in the classroom. Controlling a robot via SGD presents opportunities to improve augmentative and alternative communication operational, linguistic, social and strategic skills. Careful choice of activities will ensure that the activity requirements focus on the desired target skill, e.g. drawing or playing board games could be helpful to build operational skills and acting out stories could be helpful for building linguistic skills.

作者:Kim, Adams;Al, Cook

来源:Disability and rehabilitation. Assistive technology 2016 年 11卷 5期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:49
作者:
Kim, Adams;Al, Cook
来源:
Disability and rehabilitation. Assistive technology 2016 年 11卷 5期
标签:
Augmentative and alternative communication assistive robots complex communication needs educational activities mathematics object manipulation speech-generating device
A 12-year-old girl, Emily, with complex communication needs and severe physical limitations, controlled a Lego robot from a speech-generating device (SGD) to do various "hands-on" academic activities. Emily's teacher and assistive technology (AT) team thought that controlling a robot would motivate Emily to "use her SGD more".A descriptive case study was used because the integration of communication and manipulation technologies is not yet understood. Target activities and goals were chosen by Emily's teacher and AT team. Emily performed several manipulative math activities and engaged in an "acting" activity aimed at increasing her message length. The competency skills needed to control a robot from the SGD were examined, as well as stakeholder satisfaction with the robot system.Emily generated up to 0.4 communication events and 7 robot commands per minute in the activities. Her length of utterance was usually one-word long, but she generated two- and three-word utterances during some activities. Observations of Emily informed a framework to describe the competency skills needed to use SGDs to control robots. Emily and her teacher expressed satisfaction with robot use.Robot use could motivate students to build SGD operational skills and learn educational concepts. Implications for Rehabilitation Controlling a robot from a speech-generating device (SGD) could increase students' motivation, engagement and understanding in learning educational concepts, because of the hands-on enactive approach. The robot and SGD system was acceptable to the participant and teacher and elicited positive comments from classmates. Thus, it may provide a way for children with disabilities to link with the curriculum and with other students in the classroom. Controlling a robot via SGD presents opportunities to improve augmentative and alternative communication operational, linguistic, social and strategic skills. Careful choice of activities will ensure that the activity requirements focus on the desired target skill, e.g. drawing or playing board games could be helpful to build operational skills and acting out stories could be helpful for building linguistic skills.