您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览72

To obtain efficient therapeutics, drug release into the cytosol is required because drug targets are often located in the cytosol or have active sites that require intracellular machinery in the cytosolic compartment. However, typical nanocarriers gain cellular entry by endocytic mechanisms, confining the internalized nanocarriers to the endosomal-lysosomal system, thus resulting in the rapid destruction of active drugs without release into the cytosol. Herein, hybrid nanoparticles (HNs) with a core-shell structure, which was based on nanoemulsion-templates stabilized by both β-lactoglobulin (β-LG) and lecithin, were developed. Additionally, its formation mechanism and structure were also studied. Importantly, the HNs could directly penetrate the cell membrane and enter the cytosol, without entrapment within the endosomal-lysosomal system via the lipid raft-like pathway, thus enhancing its antitumor activities. We therefore concluded that HNs are promising targeting delivery systems for drugs, especially for pharmaceutical proteins and gene-targeting drugs.

作者:Wei, He;Zhu, Jin;Yaqi, Lv;Hui, Cao;Jing, Yao;Jianping, Zhou;Lifang, Yin

来源:International journal of pharmaceutics 2015 年 478卷 2期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:72
作者:
Wei, He;Zhu, Jin;Yaqi, Lv;Hui, Cao;Jing, Yao;Jianping, Zhou;Lifang, Yin
来源:
International journal of pharmaceutics 2015 年 478卷 2期
标签:
Cellular uptake Core–shell nanoparticles Direct cytosolic delivery Drug release Inhibitors Tumor therapy
To obtain efficient therapeutics, drug release into the cytosol is required because drug targets are often located in the cytosol or have active sites that require intracellular machinery in the cytosolic compartment. However, typical nanocarriers gain cellular entry by endocytic mechanisms, confining the internalized nanocarriers to the endosomal-lysosomal system, thus resulting in the rapid destruction of active drugs without release into the cytosol. Herein, hybrid nanoparticles (HNs) with a core-shell structure, which was based on nanoemulsion-templates stabilized by both β-lactoglobulin (β-LG) and lecithin, were developed. Additionally, its formation mechanism and structure were also studied. Importantly, the HNs could directly penetrate the cell membrane and enter the cytosol, without entrapment within the endosomal-lysosomal system via the lipid raft-like pathway, thus enhancing its antitumor activities. We therefore concluded that HNs are promising targeting delivery systems for drugs, especially for pharmaceutical proteins and gene-targeting drugs.