您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览51

Infectious disease transmission often depends on the contact structure of host populations. Although it is often challenging to capture the contact structure in wild animals, new technology has enabled biologists to obtain detailed temporal information on wildlife social contacts. In this study, we investigated the effects of raccoon contact patterns on rabies spread using network modelling. Raccoons (Procyon lotor) play an important role in the maintenance of rabies in the United States. It is crucial to understand how contact patterns influence the spread of rabies in raccoon populations in order to design effective control measures and to prevent transmission to human populations and other animals. We constructed a dynamic system of contact networks based on empirical data from proximity logging collars on a wild suburban raccoon population and then simulated rabies spread across these networks. Our contact networks incorporated the number and duration of raccoon interactions. We included differences in contacts according to sex and season, and both short-term acquaintances and long-term associations. Raccoons may display different behaviours when infectious, including aggression (furious behaviour) and impaired mobility (dumb behaviour); the network model was used to assess the impact of potential behavioural changes in rabid raccoons. We also tested the effectiveness of different vaccination coverage levels. Our results demonstrate that when rabies enters a suburban raccoon population, the likelihood of a disease outbreak affecting the majority of the population is high. Both the magnitude of rabies outbreaks and the speed of rabies spread depend strongly on the time of year that rabies is introduced into the population. When there is a combination of dumb and furious behaviours in the rabid raccoon population, there are similar outbreak sizes and speed of spread to when there are no behavioural changes due to rabies infection. By incorporating detailed data describing the variation in raccoon contact rates into a network modelling approach, we were able to show that suburban raccoon populations are highly susceptible to rabies outbreaks, that the risk of large outbreaks varies seasonally and that current vaccination target levels may be inadequate to prevent the spread of rabies within these populations. Our findings provide new insights into rabies dynamics in raccoon populations and have important implications for disease control.

作者:Jennifer J H, Reynolds;Ben T, Hirsch;Stanley D, Gehrt;Meggan E, Craft

来源:The Journal of animal ecology 2015 年 84卷 6期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:51
作者:
Jennifer J H, Reynolds;Ben T, Hirsch;Stanley D, Gehrt;Meggan E, Craft
来源:
The Journal of animal ecology 2015 年 84卷 6期
标签:
contact network epidemiological modelling host-pathogen interactions infectious disease management network modelling proximity logging collar rabies raccoon transmission wildlife disease
Infectious disease transmission often depends on the contact structure of host populations. Although it is often challenging to capture the contact structure in wild animals, new technology has enabled biologists to obtain detailed temporal information on wildlife social contacts. In this study, we investigated the effects of raccoon contact patterns on rabies spread using network modelling. Raccoons (Procyon lotor) play an important role in the maintenance of rabies in the United States. It is crucial to understand how contact patterns influence the spread of rabies in raccoon populations in order to design effective control measures and to prevent transmission to human populations and other animals. We constructed a dynamic system of contact networks based on empirical data from proximity logging collars on a wild suburban raccoon population and then simulated rabies spread across these networks. Our contact networks incorporated the number and duration of raccoon interactions. We included differences in contacts according to sex and season, and both short-term acquaintances and long-term associations. Raccoons may display different behaviours when infectious, including aggression (furious behaviour) and impaired mobility (dumb behaviour); the network model was used to assess the impact of potential behavioural changes in rabid raccoons. We also tested the effectiveness of different vaccination coverage levels. Our results demonstrate that when rabies enters a suburban raccoon population, the likelihood of a disease outbreak affecting the majority of the population is high. Both the magnitude of rabies outbreaks and the speed of rabies spread depend strongly on the time of year that rabies is introduced into the population. When there is a combination of dumb and furious behaviours in the rabid raccoon population, there are similar outbreak sizes and speed of spread to when there are no behavioural changes due to rabies infection. By incorporating detailed data describing the variation in raccoon contact rates into a network modelling approach, we were able to show that suburban raccoon populations are highly susceptible to rabies outbreaks, that the risk of large outbreaks varies seasonally and that current vaccination target levels may be inadequate to prevent the spread of rabies within these populations. Our findings provide new insights into rabies dynamics in raccoon populations and have important implications for disease control.