您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览52

In type 1 diabetes (T1D), insulin replacement therapy should ideally replicate endogenous insulin secretion, but achieving this goal requires frequent adjustments to insulin delivery based on glucose levels and trends, carbohydrate intake and physical activity. An overriding concern for people taking insulin is hypoglycaemia, which remains the most feared consequence of insulin therapy and limits therapy intensification options. Although fully automated systems that achieve consistent euglycaemia in T1D remain an elusive goal, improvements in continuous glucose monitoring (CGM) sensors and control algorithms have enabled semi-automated systems that lower the risk of hypoglycaemia, especially nocturnal hypoglycaemia. The present review focuses on an important advance in insulin delivery systems: the use of CGM data to stop insulin delivery in the presence of hypoglycaemia. Although conceptually simple, this strategy represents a critical step in the journey toward a fully closed-loop artificial pancreas; the next steps in this journey are also discussed.

作者:T, Davis;A, Salahi;J B, Welsh;T S, Bailey

来源:Diabetes, obesity & metabolism 2015 年 17卷 12期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:52
作者:
T, Davis;A, Salahi;J B, Welsh;T S, Bailey
来源:
Diabetes, obesity & metabolism 2015 年 17卷 12期
标签:
artificial pancreas closed loop insulin therapy database research glucose monitoring glycaemic control hypoglycaemia insulin delivery insulin pump therapy type 1 diabetes
In type 1 diabetes (T1D), insulin replacement therapy should ideally replicate endogenous insulin secretion, but achieving this goal requires frequent adjustments to insulin delivery based on glucose levels and trends, carbohydrate intake and physical activity. An overriding concern for people taking insulin is hypoglycaemia, which remains the most feared consequence of insulin therapy and limits therapy intensification options. Although fully automated systems that achieve consistent euglycaemia in T1D remain an elusive goal, improvements in continuous glucose monitoring (CGM) sensors and control algorithms have enabled semi-automated systems that lower the risk of hypoglycaemia, especially nocturnal hypoglycaemia. The present review focuses on an important advance in insulin delivery systems: the use of CGM data to stop insulin delivery in the presence of hypoglycaemia. Although conceptually simple, this strategy represents a critical step in the journey toward a fully closed-loop artificial pancreas; the next steps in this journey are also discussed.