您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览37

Size and conformation-specific ultraviolet and infrared spectra are used to probe the effects of binding a single water molecule on the close-lying excited states present in a model flexible bichromophore, 1,2-diphenoxyethane (DPOE). The water molecule binds to DPOE asymmetrically, thereby localizing the two electronically excited states on one or the other ring, producing a S1/S2 splitting of 190 cm(-1). Electronic localization is reflected clearly in the OH stretch transitions in the excited states. Since the S2 origin is imbedded in vibronic levels of the S1 manifold, its OH stretch spectrum reflects the vibronic coupling between these levels, producing four OH stretch transitions that are a sum of contributions from S2-localized and S1-localized excited states. The single solvent water molecule thus plays multiple roles, localizing the electronic excitation in the bichromophore, inducing electronic energy transfer between the two rings, and reporting on the state mixing via its OH stretch absorptions.

作者:Evan G, Buchanan;Joseph R, Gord;Timothy S, Zwier

来源:The journal of physical chemistry letters 2013 年 4卷 10期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:37
作者:
Evan G, Buchanan;Joseph R, Gord;Timothy S, Zwier
来源:
The journal of physical chemistry letters 2013 年 4卷 10期
标签:
excitonic splitting gas-phase internal mixing jet-cooled local modes solvatochromic shift surface hopping vibronic coupling
Size and conformation-specific ultraviolet and infrared spectra are used to probe the effects of binding a single water molecule on the close-lying excited states present in a model flexible bichromophore, 1,2-diphenoxyethane (DPOE). The water molecule binds to DPOE asymmetrically, thereby localizing the two electronically excited states on one or the other ring, producing a S1/S2 splitting of 190 cm(-1). Electronic localization is reflected clearly in the OH stretch transitions in the excited states. Since the S2 origin is imbedded in vibronic levels of the S1 manifold, its OH stretch spectrum reflects the vibronic coupling between these levels, producing four OH stretch transitions that are a sum of contributions from S2-localized and S1-localized excited states. The single solvent water molecule thus plays multiple roles, localizing the electronic excitation in the bichromophore, inducing electronic energy transfer between the two rings, and reporting on the state mixing via its OH stretch absorptions.