您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览12

One of the analytical tools for characterization of subvisible particles, which gained popularity over the last years because of its unique capabilities, is the resonance mass measurement technique. However, a challenge that this technique presents is the need to know the exact density of the measured particles in order to obtain accurate size calculations. The density of proteinaceous subvisible particles has not been measured experimentally yet and to date researchers have been using estimated density values. In this paper, we report for a first-time experimental measurements of the density of protein particles (0.2-5 μm in size) using particles created by stressing three different proteins using four different types of stress conditions. Interestingly, the particle density values that were measured varied between 1.28 and 1.33 g/cm(3) and were lower than previous estimates. Furthermore, it was found that although the density of proteinaceous particles was affected to a very low degree by the stress conditions used to generate them, there is relatively larger difference between particles originating from different classes of proteins (e.g., monoclonal antibody vs. bovine serum albumin).

作者:Emilien, Folzer;Tarik A, Khan;Roland, Schmidt;Christof, Finkler;J?rg, Huwyler;Hanns-Christian, Mahler;Atanas V, Koulov

来源:Journal of pharmaceutical sciences 2015 年 104卷 12期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:12
作者:
Emilien, Folzer;Tarik A, Khan;Roland, Schmidt;Christof, Finkler;J?rg, Huwyler;Hanns-Christian, Mahler;Atanas V, Koulov
来源:
Journal of pharmaceutical sciences 2015 年 104卷 12期
标签:
Archimedes density determination microparticles nanoparticles particle size protein aggregation proteins resonance mass measurement suspended microchannel resonator
One of the analytical tools for characterization of subvisible particles, which gained popularity over the last years because of its unique capabilities, is the resonance mass measurement technique. However, a challenge that this technique presents is the need to know the exact density of the measured particles in order to obtain accurate size calculations. The density of proteinaceous subvisible particles has not been measured experimentally yet and to date researchers have been using estimated density values. In this paper, we report for a first-time experimental measurements of the density of protein particles (0.2-5 μm in size) using particles created by stressing three different proteins using four different types of stress conditions. Interestingly, the particle density values that were measured varied between 1.28 and 1.33 g/cm(3) and were lower than previous estimates. Furthermore, it was found that although the density of proteinaceous particles was affected to a very low degree by the stress conditions used to generate them, there is relatively larger difference between particles originating from different classes of proteins (e.g., monoclonal antibody vs. bovine serum albumin).