您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览40

DNA methylation is the current strategy in the field of biomarker discovery due to its prognostic efficiency. Its role in prognosis and early diagnosis has been recognized in various types of cancer. Sepsis still remains one of the major causes of neonatal mortality. Delay in diagnosis of sepsis leads to treatment difficulties and poor outcome. In this study, we have done an epigenome wide search to identify potential markers for prognosis of neonatal sepsis which may improve the treatment strategies. We analyzed the CpG methylation status in the epigenome of three septic and non-septic babies using Illumina Infinium HumanMethylation450K methylation microarray. The microarray data was analyzed with Illumina GenomeStudio v2011.1. After screening for biological and clinical significance, we found 81 differentially methylated CpGs located in 64 genes. Bioinformatic analysis using DAVID and GeneMania revealed a panel of differentially methylated protocadherin beta (PCDHB) genes that play vital role in leukocyte cell adhesion and Wnt signaling pathway. Apart, genes like CCS, DNAJA3, and DEGS2 were potentially hyper/hypo methylated which can be utilized in the development of novel biomarkers. This study will be helpful in exploring the role of DNA methylation in the pathophysiology of neonatal sepsis. The complete microarray data can be accessed from the public domain, Gene Expression Omnibus of NCBI (http://www.ncbi.nlm.nih.gov/geo/). The accession number is GSE58651.

作者:D Benet Bosco, Dhas;A Hiasindh, Ashmi;B Vishnu, Bhat;S, Kalaivani;Subash Chandra, Parija

来源:Genomics data 2015 年 3卷

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:40
作者:
D Benet Bosco, Dhas;A Hiasindh, Ashmi;B Vishnu, Bhat;S, Kalaivani;Subash Chandra, Parija
来源:
Genomics data 2015 年 3卷
标签:
CpG sites DNA methylation Epigenetics Microarray Neonatal sepsis
DNA methylation is the current strategy in the field of biomarker discovery due to its prognostic efficiency. Its role in prognosis and early diagnosis has been recognized in various types of cancer. Sepsis still remains one of the major causes of neonatal mortality. Delay in diagnosis of sepsis leads to treatment difficulties and poor outcome. In this study, we have done an epigenome wide search to identify potential markers for prognosis of neonatal sepsis which may improve the treatment strategies. We analyzed the CpG methylation status in the epigenome of three septic and non-septic babies using Illumina Infinium HumanMethylation450K methylation microarray. The microarray data was analyzed with Illumina GenomeStudio v2011.1. After screening for biological and clinical significance, we found 81 differentially methylated CpGs located in 64 genes. Bioinformatic analysis using DAVID and GeneMania revealed a panel of differentially methylated protocadherin beta (PCDHB) genes that play vital role in leukocyte cell adhesion and Wnt signaling pathway. Apart, genes like CCS, DNAJA3, and DEGS2 were potentially hyper/hypo methylated which can be utilized in the development of novel biomarkers. This study will be helpful in exploring the role of DNA methylation in the pathophysiology of neonatal sepsis. The complete microarray data can be accessed from the public domain, Gene Expression Omnibus of NCBI (http://www.ncbi.nlm.nih.gov/geo/). The accession number is GSE58651.