您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览96

Autophagy defect has been shown to be correlated with malignant phenotype and poor prognosis of human cancers, however, the detailed mechanisms remain obscure. In this study, we investigated the biological changes induced by autophagy inhibition in gastric cancer. We showed that inhibition of autophagy in gastric cancer cells promotes epithelial-mesenchymal transition (EMT) and metastasis, alters metabolic phenotype from mitochondrial oxidative phosphorylation to aerobic glycolysis and converts cell phenotype toward malignant, which maybe further contribute to chemoresistance and poor prognosis of gastric cancer. We also identified that the EMT and metabolism alterations induced by autophagy inhibition were dependent on ROS-NF-κB-HIF-1α pathway. More importantly, scavenging of ROS by the antioxidant N-acetylcysteine (NAC) attenuated activation of NF-κB and HIF-1α in autophagy-deficient gastric cancer cells, and autophagy inhibition induced metastasis and glycolysis were also diminished by NAC in vivo. Taken together, our findings suggested that autophagy defect promotes metastasis and glycolysis of gastric cancer, and antioxidants could be used to improve disease outcome for gastric cancer patients with autophagy defect.

作者:Wenjie, Qin;Chao, Li;Wen, Zheng;Qingqu, Guo;Yuefeng, Zhang;Muxing, Kang;Bo, Zhang;Bin, Yang;Baozhong, Li;Haijun, Yang;Yulian, Wu

来源:Oncotarget 2015 年 6卷 37期

相似文献
知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:96
作者:
Wenjie, Qin;Chao, Li;Wen, Zheng;Qingqu, Guo;Yuefeng, Zhang;Muxing, Kang;Bo, Zhang;Bin, Yang;Baozhong, Li;Haijun, Yang;Yulian, Wu
来源:
Oncotarget 2015 年 6卷 37期
标签:
antioxidant autophagy inhibition glycolysis metastasis reactive oxygen species (ROS)
Autophagy defect has been shown to be correlated with malignant phenotype and poor prognosis of human cancers, however, the detailed mechanisms remain obscure. In this study, we investigated the biological changes induced by autophagy inhibition in gastric cancer. We showed that inhibition of autophagy in gastric cancer cells promotes epithelial-mesenchymal transition (EMT) and metastasis, alters metabolic phenotype from mitochondrial oxidative phosphorylation to aerobic glycolysis and converts cell phenotype toward malignant, which maybe further contribute to chemoresistance and poor prognosis of gastric cancer. We also identified that the EMT and metabolism alterations induced by autophagy inhibition were dependent on ROS-NF-κB-HIF-1α pathway. More importantly, scavenging of ROS by the antioxidant N-acetylcysteine (NAC) attenuated activation of NF-κB and HIF-1α in autophagy-deficient gastric cancer cells, and autophagy inhibition induced metastasis and glycolysis were also diminished by NAC in vivo. Taken together, our findings suggested that autophagy defect promotes metastasis and glycolysis of gastric cancer, and antioxidants could be used to improve disease outcome for gastric cancer patients with autophagy defect.